The simultaneous measurement of atomoxetine, venlafaxine, and duloxetine in actual water and biological samples requires the creation of a unique magnetic dispersive micro solid phase extraction sorbent based on MOF-on-MOF

IF 2.3 4区 化学 Q3 CHEMISTRY, ANALYTICAL International Journal of Environmental Analytical Chemistry Pub Date : 2023-11-13 DOI:10.1080/03067319.2023.2276344
Aysir Alhmaunde, Mahboubeh Masrournia, Ali Javid
{"title":"The simultaneous measurement of atomoxetine, venlafaxine, and duloxetine in actual water and biological samples requires the creation of a unique magnetic dispersive micro solid phase extraction sorbent based on MOF-on-MOF","authors":"Aysir Alhmaunde, Mahboubeh Masrournia, Ali Javid","doi":"10.1080/03067319.2023.2276344","DOIUrl":null,"url":null,"abstract":"ABSTRACTAtomoxetine, venlafaxine, and duloxetine are three antidepressant drugs widely prescribed to treat this disorder. Determining these drugs is a major challenge due to their low concentration and high matrix effects on biological samples. Dispersive micro solid phase extraction was developed as a sample preparation strategy to extract these drugs in real water and biological samples. A novel sorbent containing a magnetic MOF-on-MOF was prepared to extract these drugs using Fe3O4 nanoparticle and Sol-gel technique. The microextraction procedure was optimised under two steps using experimental design. Three factors, including pH, sorbent amount, and desorption solvent volume, significantly affected the extraction of analytes and optimised using a central composite design. The optimum value of pH, sorbent amount, and desorption solvent volume was 29 mg, 6.5, and 150 µL. Under optimum conditions, the linear ranges for measuring atomoxetine, venlafaxine, and duloxetine in water samples were 1.42–496, 0.43–472, and 0.73–459 ng mL−1, respectively. The detection limits of atomoxetine, venlafaxine, and duloxetine were 0.4, 0.1, and 0.2 ng mL−1. High and proper preconcentration factors ranged from 462.4–511.4 in distiled water samples and 450.7–489.8 in urine samples were obtained to determine atomoxetine, venlafaxine, and duloxetine with three concentrations of 5.0, 20.0, and 100.0 ng mL−1, respectively. Inter-day and intra-day RSD% were calculated by triplicate determination of atomoxetine, venlafaxine, and duloxetine at three concentrations of 10.0, 50.0 and 100.0 ng mL−1 and were between 3.2–4.3% and 3.8–4.6% in distiled water samples, and 4.8–5.7% and 5.0–5.8% in urine samples, respectively. Analysis of tap, river water, and two urine samples as real water and biological samples under optimum conditions exhibited recovery and standard deviation in the ranges of 90.2–96.9% and 3.84–5.74%, respectively, confirmed the proper ability of the method to determine atomoxetine, venlafaxine, and duloxetine in natural water and biological samples.KEYWORDS: Antidepressant drugsdispersive micro solid phase extractionMOF-on-MOFbiological samplesexperimental designmagnetic sorbent AcknowledgmentsThe authors express their appreciation with the Research Council of Islamic Azad University of Mashhad, Iran for financial support.Disclosure statementNo potential conflict of interest was reported by the author(s).Compliance with ethical standardsThe study has been carried out under the institutional and/or national research committee’s ethical standards and with the 1964 Helsinki declaration and its later amendments or comparable Ethical standards.CRediT authorship contribution statementAysir Alhmaunde: Writing e original draft, Investigation, Methodology, Data curation, Formal analysis, Resources.Mahboubeh Masrournia: Conceptualisation, Investigation, Writing e review & editing.Ali Javid: Conceptualisation, Investigation, Writing e review & editing.Supplementary dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/03067319.2023.2276344.","PeriodicalId":13973,"journal":{"name":"International Journal of Environmental Analytical Chemistry","volume":"25 12","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Analytical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03067319.2023.2276344","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACTAtomoxetine, venlafaxine, and duloxetine are three antidepressant drugs widely prescribed to treat this disorder. Determining these drugs is a major challenge due to their low concentration and high matrix effects on biological samples. Dispersive micro solid phase extraction was developed as a sample preparation strategy to extract these drugs in real water and biological samples. A novel sorbent containing a magnetic MOF-on-MOF was prepared to extract these drugs using Fe3O4 nanoparticle and Sol-gel technique. The microextraction procedure was optimised under two steps using experimental design. Three factors, including pH, sorbent amount, and desorption solvent volume, significantly affected the extraction of analytes and optimised using a central composite design. The optimum value of pH, sorbent amount, and desorption solvent volume was 29 mg, 6.5, and 150 µL. Under optimum conditions, the linear ranges for measuring atomoxetine, venlafaxine, and duloxetine in water samples were 1.42–496, 0.43–472, and 0.73–459 ng mL−1, respectively. The detection limits of atomoxetine, venlafaxine, and duloxetine were 0.4, 0.1, and 0.2 ng mL−1. High and proper preconcentration factors ranged from 462.4–511.4 in distiled water samples and 450.7–489.8 in urine samples were obtained to determine atomoxetine, venlafaxine, and duloxetine with three concentrations of 5.0, 20.0, and 100.0 ng mL−1, respectively. Inter-day and intra-day RSD% were calculated by triplicate determination of atomoxetine, venlafaxine, and duloxetine at three concentrations of 10.0, 50.0 and 100.0 ng mL−1 and were between 3.2–4.3% and 3.8–4.6% in distiled water samples, and 4.8–5.7% and 5.0–5.8% in urine samples, respectively. Analysis of tap, river water, and two urine samples as real water and biological samples under optimum conditions exhibited recovery and standard deviation in the ranges of 90.2–96.9% and 3.84–5.74%, respectively, confirmed the proper ability of the method to determine atomoxetine, venlafaxine, and duloxetine in natural water and biological samples.KEYWORDS: Antidepressant drugsdispersive micro solid phase extractionMOF-on-MOFbiological samplesexperimental designmagnetic sorbent AcknowledgmentsThe authors express their appreciation with the Research Council of Islamic Azad University of Mashhad, Iran for financial support.Disclosure statementNo potential conflict of interest was reported by the author(s).Compliance with ethical standardsThe study has been carried out under the institutional and/or national research committee’s ethical standards and with the 1964 Helsinki declaration and its later amendments or comparable Ethical standards.CRediT authorship contribution statementAysir Alhmaunde: Writing e original draft, Investigation, Methodology, Data curation, Formal analysis, Resources.Mahboubeh Masrournia: Conceptualisation, Investigation, Writing e review & editing.Ali Javid: Conceptualisation, Investigation, Writing e review & editing.Supplementary dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/03067319.2023.2276344.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同时测量实际水和生物样品中的托莫西汀、文拉法辛和度洛西汀需要创建一种基于MOF-on-MOF的独特磁分散微固相萃取吸附剂
摘要托莫西汀、文拉法辛和度洛西汀是三种广泛用于治疗抑郁症的抗抑郁药物。由于这些药物的浓度低,对生物样品的基质效应高,因此确定这些药物是一项重大挑战。分散微固相萃取作为一种样品制备策略,在真实的水和生物样品中提取这些药物。利用Fe3O4纳米颗粒和溶胶-凝胶技术制备了一种新型磁性MOF-on-MOF吸附剂来提取这些药物。采用实验设计对微萃取工艺进行了两步优化。pH、吸附剂用量和解吸溶剂体积这三个因素显著影响分析物的提取,并使用中心复合设计进行了优化。最佳pH值、吸附剂用量和解吸溶剂体积分别为29 mg、6.5和150µL。在最佳条件下,测定水样中托莫西汀、文拉法辛和度洛西汀的线性范围分别为1.42 ~ 496、0.43 ~ 472和0.73 ~ 459 ng mL−1。托莫西汀、文拉法辛、度洛西汀的检出限分别为0.4、0.1、0.2 ng mL−1。在测定托莫西汀、文拉法辛和度洛西汀浓度分别为5.0、20.0和100.0 ng mL−1时,蒸馏水样品的预浓缩系数为462.4 ~ 511.4,尿液样品的预浓缩系数为450.7 ~ 489.8。通过对托莫西汀、文拉法辛和度洛西汀在10.0、50.0和100.0 ng mL−1三种浓度下的三次测定,计算其日间和日间RSD%,在蒸馏水样品中分别为3.2-4.3%和3.8-4.6%,在尿液样品中分别为4.8-5.7%和5.0-5.8%。自来水、河水和两种尿液作为真实水和生物样品,在最佳条件下的回收率和标准偏差分别为90.2 ~ 96.9%和3.84 ~ 5.74%,证实了该方法测定天然水和生物样品中托莫西汀、文拉法辛和度洛西汀的适宜性。关键词:抗抑郁药物;分散微固相萃取;mof -on- mof生物样品;实验设计;磁性吸附剂披露声明作者未报告潜在的利益冲突。遵守伦理标准本研究是在机构和/或国家研究委员会的伦理标准下进行的,并遵循1964年赫尔辛基宣言及其后来的修正案或类似的伦理标准。aysir Alhmaunde:撰写原稿,调查,方法论,数据管理,形式分析,资源。Mahboubeh Masrournia:概念化,调查,写作,评论和编辑。阿里·贾维德:概念化,调查,写作,审查和编辑。本文的补充数据可以在线访问https://doi.org/10.1080/03067319.2023.2276344。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
7.70%
发文量
373
审稿时长
4.4 months
期刊介绍: International Journal of Environmental Analytical Chemistry comprises original research on all aspects of analytical work related to environmental problems. This includes analysis of organic, inorganic and radioactive pollutants in air, water, sediments and biota; and determination of harmful substances, including analytical methods for the investigation of chemical or metabolic breakdown patterns in the environment and in biological samples. The journal also covers the development of new analytical methods or improvement of existing ones useful for the control and investigation of pollutants or trace amounts of naturally occurring active chemicals in all environmental compartments. Development, modification and automation of instruments and techniques with potential in environment sciences are also part of the journal. Case studies are also considered, particularly for areas where information is scarce or lacking, providing that reported data is significant and representative, either spatially or temporally, and quality assured. Owing to the interdisciplinary nature of this journal, it will also include topics of interest to researchers in the fields of medical science (health sciences), toxicology, forensic sciences, oceanography, food sciences, biological sciences and other fields that, in one way or another, contribute to the knowledge of our environment and have to make use of analytical chemistry for this purpose.
期刊最新文献
Activated carbon from single use surgical mask as an efficient adsorbent for 4-nitrophenol and 2,4-dicholorophenol from aqueous solution: adsorption kinetics, isotherms and thermodynamic study In 2 S 3 /HAp nanocomposite: a comprehensive study on synthesis, structural insights, and high-performance adsorption of Methyl Red dye in water treatment applications LED-enhanced photocatalytic reduction of hexavalent chromium by Cu-doped ZnO nanorods: kinetic modeling, cost analysis, and toxicity assessment Potential health risk assessment of nitrate in groundwater of Tonk district in Rajasthan, north western India Photocatalytic removal of AR14 from aqueous solutions under visible light irradiation by synthesising sugarcane bagasse magnetic graphene oxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1