{"title":"Energy-Aware Adaptive Mixed-Criticality Scheduling with Semi-Clairvoyance and Graceful Degradation","authors":"Yi-Wen Zhang, Hui Zheng, Zonghua Gu","doi":"10.1145/3632749","DOIUrl":null,"url":null,"abstract":"The classic Mixed-Criticality System (MCS) task model is a non-clairvoyance model in which the change of the system behavior is based on the completion of high-criticality tasks while dropping low-criticality tasks in high-criticality mode. In this paper, we simultaneously consider graceful degradation and semi-clairvoyance in MCS. We first propose the analysis for adaptive mixed-criticality with semi-clairvoyance denoted as C-AMC-sem. The so-called semi-clairvoyance refers to the system’s behavior change being revealed at the time that jobs are released. Moreover, we propose a new algorithm based on C-AMC-sem to reduce energy consumption. Finally, we verify the performance of the proposed algorithms via experiments upon synthetically generated tasksets. The experimental results indicate that the proposed algorithms significantly outperform the existing algorithms.","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":"46 20","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3632749","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The classic Mixed-Criticality System (MCS) task model is a non-clairvoyance model in which the change of the system behavior is based on the completion of high-criticality tasks while dropping low-criticality tasks in high-criticality mode. In this paper, we simultaneously consider graceful degradation and semi-clairvoyance in MCS. We first propose the analysis for adaptive mixed-criticality with semi-clairvoyance denoted as C-AMC-sem. The so-called semi-clairvoyance refers to the system’s behavior change being revealed at the time that jobs are released. Moreover, we propose a new algorithm based on C-AMC-sem to reduce energy consumption. Finally, we verify the performance of the proposed algorithms via experiments upon synthetically generated tasksets. The experimental results indicate that the proposed algorithms significantly outperform the existing algorithms.
期刊介绍:
The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.