{"title":"A Hybrid Deep Learning Approach to Keyword Spotting in Vietnamese Stele Images","authors":"Anna Scius-Bertrand, Marc Bui, Andreas Fischer","doi":"10.31449/inf.v47i3.4785","DOIUrl":null,"url":null,"abstract":"In order to access the rich cultural heritage conveyed in Vietnamese steles, automatic reading of stone engravings would be a great support for historians, who are analyzing tens of thousands of stele images. Approaching the challenging problem with deep learning alone is difficult because the data-driven models require large representative datasets with expert human annotations, which are not available for the steles and costly to obtain. In this article, we present a hybrid approach to spot keywords in stele images that combines data-driven deep learning with knowledge-based structural modeling and matching of Chu Nom characters. The main advantage of the proposed method is that it is annotation-free, i.e. no human data annotation is required. In an experimental evaluation, we demonstrate that keywords can be successfully spotted with a mean average precision of more than 70% when a single engraving style is considered.","PeriodicalId":56292,"journal":{"name":"Informatica","volume":"12 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31449/inf.v47i3.4785","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to access the rich cultural heritage conveyed in Vietnamese steles, automatic reading of stone engravings would be a great support for historians, who are analyzing tens of thousands of stele images. Approaching the challenging problem with deep learning alone is difficult because the data-driven models require large representative datasets with expert human annotations, which are not available for the steles and costly to obtain. In this article, we present a hybrid approach to spot keywords in stele images that combines data-driven deep learning with knowledge-based structural modeling and matching of Chu Nom characters. The main advantage of the proposed method is that it is annotation-free, i.e. no human data annotation is required. In an experimental evaluation, we demonstrate that keywords can be successfully spotted with a mean average precision of more than 70% when a single engraving style is considered.
期刊介绍:
The quarterly journal Informatica provides an international forum for high-quality original research and publishes papers on mathematical simulation and optimization, recognition and control, programming theory and systems, automation systems and elements. Informatica provides a multidisciplinary forum for scientists and engineers involved in research and design including experts who implement and manage information systems applications.