{"title":"Low-Resource Neural Machine Translation Improvement Using Data Augmentation Strategies","authors":"Thai Nguyen Quoc, Huong Le Thanh, Hanh Pham Van","doi":"10.31449/inf.v47i3.4761","DOIUrl":null,"url":null,"abstract":"The development of neural models has greatly improved the performance of machine translation, but these methods require large-scale parallel data, which can be difficult to obtain for low-resource language pairs. To address this issue, this research employs a pre-trained multilingual model and fine-tunes it by using a small bilingual dataset. Additionally, two data-augmentation strategies are proposed to generate new training data: (i) back-translation with the dataset from the source language; (ii) data augmentation via the English pivot language. The proposed approach is applied to the Khmer-Vietnamese machine translation. Experimental results show that our proposed approach outperforms the Google Translator model by 5.3% in terms of BLEU score on a test set of 2,000 Khmer-Vietnamese sentence pairs.","PeriodicalId":56292,"journal":{"name":"Informatica","volume":"22 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31449/inf.v47i3.4761","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of neural models has greatly improved the performance of machine translation, but these methods require large-scale parallel data, which can be difficult to obtain for low-resource language pairs. To address this issue, this research employs a pre-trained multilingual model and fine-tunes it by using a small bilingual dataset. Additionally, two data-augmentation strategies are proposed to generate new training data: (i) back-translation with the dataset from the source language; (ii) data augmentation via the English pivot language. The proposed approach is applied to the Khmer-Vietnamese machine translation. Experimental results show that our proposed approach outperforms the Google Translator model by 5.3% in terms of BLEU score on a test set of 2,000 Khmer-Vietnamese sentence pairs.
期刊介绍:
The quarterly journal Informatica provides an international forum for high-quality original research and publishes papers on mathematical simulation and optimization, recognition and control, programming theory and systems, automation systems and elements. Informatica provides a multidisciplinary forum for scientists and engineers involved in research and design including experts who implement and manage information systems applications.