Complaints with Target Scope Identification on Social Media

IF 3.3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Informatica Pub Date : 2023-08-29 DOI:10.31449/inf.v47i3.4758
Kazuhiro Ito, Taichi Murayama, Shuntaro Yada, Shoko Wakamiya, Eiji Aramaki
{"title":"Complaints with Target Scope Identification on Social Media","authors":"Kazuhiro Ito, Taichi Murayama, Shuntaro Yada, Shoko Wakamiya, Eiji Aramaki","doi":"10.31449/inf.v47i3.4758","DOIUrl":null,"url":null,"abstract":"A complaint is uttered when reality fails to meet one's expectations. Research on complaints, which contributes to our understanding of basic human behavior, has been conducted in the fields of psychology, linguistics, and marketing. Although several approaches have been implemented to the study of complaints, studies have yet focused on a target scope of complaints. Examination of a target scope of complaints is crusial because the functions of complaints, such as evocation of emotion, use of grammar, and intention, are different depending on the target scope. We first tackle the construction and release of a complaint dataset of 6,418 tweets by annotating Japanese texts collected from Twitter with labels of the target scope. Our dataset is available at \\url{https://github.com/sociocom/JaGUCHI}. We then benchmark the annotated dataset with several machine learning baselines and obtain the best performance of 90.4 F1-score in detecting whether a text was a complaint or not, and a micro-F1 score of 72.2 in identifying the target scope label. Finally, we conducted case studies using our model to demonstrate that identifying a target scope of complaints is useful for sociological analysis.","PeriodicalId":56292,"journal":{"name":"Informatica","volume":"66 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31449/inf.v47i3.4758","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

A complaint is uttered when reality fails to meet one's expectations. Research on complaints, which contributes to our understanding of basic human behavior, has been conducted in the fields of psychology, linguistics, and marketing. Although several approaches have been implemented to the study of complaints, studies have yet focused on a target scope of complaints. Examination of a target scope of complaints is crusial because the functions of complaints, such as evocation of emotion, use of grammar, and intention, are different depending on the target scope. We first tackle the construction and release of a complaint dataset of 6,418 tweets by annotating Japanese texts collected from Twitter with labels of the target scope. Our dataset is available at \url{https://github.com/sociocom/JaGUCHI}. We then benchmark the annotated dataset with several machine learning baselines and obtain the best performance of 90.4 F1-score in detecting whether a text was a complaint or not, and a micro-F1 score of 72.2 in identifying the target scope label. Finally, we conducted case studies using our model to demonstrate that identifying a target scope of complaints is useful for sociological analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社交媒体上有目标范围识别的投诉
当现实不能满足一个人的期望时,就会抱怨。心理学、语言学和市场营销领域对抱怨的研究有助于我们对人类基本行为的理解。虽然对投诉的研究采取了几种方法,但研究的重点仍然是投诉的目标范围。检查投诉的目标范围是至关重要的,因为投诉的功能,如情感的唤起、语法的使用和意图,随着目标范围的不同而不同。我们首先通过用目标范围的标签注释从Twitter收集的日语文本,解决了包含6,418条tweet的投诉数据集的构建和发布问题。我们的数据集可以在\url{https://github.com/sociocom/JaGUCHI}上找到。然后,我们用几个机器学习基线对带注释的数据集进行基准测试,在检测文本是否为投诉方面获得了90.4 f1分的最佳性能,在识别目标范围标签方面获得了72.2的微f1分。最后,我们使用我们的模型进行了案例研究,以证明确定投诉的目标范围对社会学分析是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Informatica
Informatica 工程技术-计算机:信息系统
CiteScore
5.90
自引率
6.90%
发文量
19
审稿时长
12 months
期刊介绍: The quarterly journal Informatica provides an international forum for high-quality original research and publishes papers on mathematical simulation and optimization, recognition and control, programming theory and systems, automation systems and elements. Informatica provides a multidisciplinary forum for scientists and engineers involved in research and design including experts who implement and manage information systems applications.
期刊最新文献
Beyond Quasi-Adjoint Graphs: On Polynomial-Time Solvable Cases of the Hamiltonian Cycle and Path Problems Confidential Transaction Balance Verification by the Net Using Non-Interactive Zero-Knowledge Proofs An Improved Algorithm for Extracting Frequent Gradual Patterns Offloaded Data Processing Energy Efficiency Evaluation Demystifying the Stability and the Performance Aspects of CoCoSo Ranking Method under Uncertain Preferences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1