Robust magnetic proximity induced anomalous Hall effect in a room temperature van der Waals ferromagnetic semiconductor based 2D heterostructure

Wu, Hao, Yang, Li, Zhang, Gaojie, Jin, Wen, Xiao, Bichen, Zhang, Wenfeng, Chang, Haixin
{"title":"Robust magnetic proximity induced anomalous Hall effect in a room\n temperature van der Waals ferromagnetic semiconductor based 2D\n heterostructure","authors":"Wu, Hao, Yang, Li, Zhang, Gaojie, Jin, Wen, Xiao, Bichen, Zhang, Wenfeng, Chang, Haixin","doi":"10.48550/arxiv.2311.07183","DOIUrl":null,"url":null,"abstract":"Developing novel high-temperature van der Waals ferromagnetic semiconductor materials and investigating their interface coupling effects with two-dimensional topological semimetals are pivotal for advancing next-generation spintronic and quantum devices. However, most van der Waals ferromagnetic semiconductors exhibit ferromagnetism only at low temperatures, limiting the proximity research on their interfaces with topological semimetals. Here, we report an intrinsic, van der Waals layered room-temperature ferromagnetic semiconductor crystal, FeCr0.5Ga1.5Se4 (FCGS), with a Curie temperature as high as 370 K, setting a new record for van der Waals ferromagnetic semiconductors. The saturation magnetization at low temperature (2 K) and room temperature (300 K) reaches 8.2 emu/g and 2.7 emu/g, respectively. Furthermore, FCGS possesses a bandgap of approximately 1.2 eV, which is comparable to the widely used commercial silicon. The FCGS/graphene heterostructure exhibits an impeccably smooth and gapless interface, thereby inducing a robust magnetic proximity coupling effect between FCGS and graphene. After the proximity coupling, graphene undergoes a charge carrier transition from electrons to holes, accompanied by a transition from non-magnetic to ferromagnetic transport behavior with robust anomalous Hall effect. Notably, the anomalous Hall effect remains robust even temperatures up to 400 K.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2311.07183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Developing novel high-temperature van der Waals ferromagnetic semiconductor materials and investigating their interface coupling effects with two-dimensional topological semimetals are pivotal for advancing next-generation spintronic and quantum devices. However, most van der Waals ferromagnetic semiconductors exhibit ferromagnetism only at low temperatures, limiting the proximity research on their interfaces with topological semimetals. Here, we report an intrinsic, van der Waals layered room-temperature ferromagnetic semiconductor crystal, FeCr0.5Ga1.5Se4 (FCGS), with a Curie temperature as high as 370 K, setting a new record for van der Waals ferromagnetic semiconductors. The saturation magnetization at low temperature (2 K) and room temperature (300 K) reaches 8.2 emu/g and 2.7 emu/g, respectively. Furthermore, FCGS possesses a bandgap of approximately 1.2 eV, which is comparable to the widely used commercial silicon. The FCGS/graphene heterostructure exhibits an impeccably smooth and gapless interface, thereby inducing a robust magnetic proximity coupling effect between FCGS and graphene. After the proximity coupling, graphene undergoes a charge carrier transition from electrons to holes, accompanied by a transition from non-magnetic to ferromagnetic transport behavior with robust anomalous Hall effect. Notably, the anomalous Hall effect remains robust even temperatures up to 400 K.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
室温范德华铁磁半导体二维异质结构中鲁棒磁邻近诱导的反常霍尔效应
开发新型高温范德华铁磁半导体材料,研究其与二维拓扑半金属的界面耦合效应,是推进下一代自旋电子和量子器件的关键。然而,大多数范德华铁磁半导体仅在低温下表现出铁磁性,限制了其与拓扑半金属界面的接近性研究。本文报道了一种本构的、范德华层状的室温铁磁半导体晶体FeCr0.5Ga1.5Se4 (FCGS),其居里温度高达370 K,创下了范德华铁磁半导体的新纪录。在低温(2 K)和室温(300 K)下饱和磁化强度分别达到8.2 emu/g和2.7 emu/g。此外,FCGS具有约1.2 eV的带隙,与广泛使用的商用硅相当。FCGS/石墨烯异质结构具有无可挑剔的光滑和无间隙界面,从而在FCGS和石墨烯之间诱导了强大的磁邻近耦合效应。在接近耦合后,石墨烯经历了从电子到空穴的电荷载流子跃迁,伴随着从非磁性到铁磁性的转移行为,并具有鲁棒的异常霍尔效应。值得注意的是,即使温度高达400k,反常霍尔效应仍然很强劲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CCD Photometry of the Globular Cluster NGC 5897 The Distribution of Sandpile Groups of Random Graphs with their Pairings CLiF-VQA: Enhancing Video Quality Assessment by Incorporating High-Level Semantic Information related to Human Feelings Full-dry Flipping Transfer Method for van der Waals Heterostructure Code-Aided Channel Estimation in LDPC-Coded MIMO Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1