Deep Learning Parameterization of Vertical Wind Velocity Variability via Constrained Adversarial Training

Donifan Barahona, Katherine H. Breen, Heike Kalesse-Los, Johannes Röttenbacher
{"title":"Deep Learning Parameterization of Vertical Wind Velocity Variability via Constrained Adversarial Training","authors":"Donifan Barahona, Katherine H. Breen, Heike Kalesse-Los, Johannes Röttenbacher","doi":"10.1175/aies-d-23-0025.1","DOIUrl":null,"url":null,"abstract":"Abstract Atmospheric models with typical resolution in the tenths of kilometers cannot resolve the dynamics of air parcel ascent, which varies on scales ranging from tens to hundreds of meters. Small-scale wind fluctuations are thus characterized by a subgrid distribution of vertical wind velocity, W , with standard deviation σ W . The parameterization of σ W is fundamental to the representation of aerosol-cloud interactions, yet it is poorly constrained. Using a novel deep learning technique, this work develops a new parameterization for σ W merging data from global storm-resolving model simulations, high-frequency retrievals of W , and climate reanalysis products. The parameterization reproduces the observed statistics of σ W and leverages learned physical relations from the model simulations to guide extrapolation beyond the observed domain. Incorporating observational data during the training phase was found to be critical for its performance. The parameterization can be applied online within large-scale atmospheric models, or offline using output from weather forecasting and reanalysis products.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-23-0025.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Atmospheric models with typical resolution in the tenths of kilometers cannot resolve the dynamics of air parcel ascent, which varies on scales ranging from tens to hundreds of meters. Small-scale wind fluctuations are thus characterized by a subgrid distribution of vertical wind velocity, W , with standard deviation σ W . The parameterization of σ W is fundamental to the representation of aerosol-cloud interactions, yet it is poorly constrained. Using a novel deep learning technique, this work develops a new parameterization for σ W merging data from global storm-resolving model simulations, high-frequency retrievals of W , and climate reanalysis products. The parameterization reproduces the observed statistics of σ W and leverages learned physical relations from the model simulations to guide extrapolation beyond the observed domain. Incorporating observational data during the training phase was found to be critical for its performance. The parameterization can be applied online within large-scale atmospheric models, or offline using output from weather forecasting and reanalysis products.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于约束对抗训练的垂直风速变异性的深度学习参数化
典型的分辨率在十分之一公里的大气模式无法解析在几十到几百米尺度上变化的气包上升动力学。因此,小尺度风波动的特征是垂直风速W的亚网格分布,标准差为σ W。σ W的参数化是表征气溶胶-云相互作用的基础,但它的约束很差。本文利用一种新颖的深度学习技术,开发了一种新的参数化方法,将全球风暴分辨模式模拟数据、W的高频检索数据和气候再分析产品相结合。参数化再现了σ W的观测统计量,并利用从模型模拟中学习到的物理关系来指导观测域之外的外推。在训练阶段纳入观测数据对其性能至关重要。参数化可以在线应用于大尺度大气模式,也可以离线应用于天气预报和再分析产品的输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transferability and explainability of deep learning emulators for regional climate model projections: Perspectives for future applications Classification of ice particle shapes using machine learning on forward light scattering images Convolutional encoding and normalizing flows: a deep learning approach for offshore wind speed probabilistic forecasting in the Mediterranean Sea Neural networks to find the optimal forcing for offsetting the anthropogenic climate change effects Machine Learning Approach for Spatiotemporal Multivariate Optimization of Environmental Monitoring Sensor Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1