Davide Piciucco, Francesco Foti, Margaux Geuzaine, Vincent Denoël
{"title":"Bayesian forces identification in cable networks with small bending stiffness","authors":"Davide Piciucco, Francesco Foti, Margaux Geuzaine, Vincent Denoël","doi":"10.1177/14759217231186957","DOIUrl":null,"url":null,"abstract":"The regular monitoring of cable forces is essential for ensuring the safety of cable structures both during construction and throughout their lifetime. This paper aims at developing a vibration-based identification procedure of the axial forces, bending stiffness, and, secondarily, the crossing point position of cable networks. A model constituted by two crossing stays having small bending stiffness and negligible sag effects is considered. The in-plane direct dynamic problem is solved both numerically and through a perturbation approach. The obtained results are compared to the outcomes of a finite element model for verification purposes. The theoretical studies are also supported by experimental tests performed on a real cable-stayed bridge (Haccourt bridge), which provide insights into the dynamics of the system showing that models of cables with small bending stiffness are more appropriate than taut string models. The inverse analysis based on non-linear Bayesian regression is developed and the closed-form asymptotic formulations are used to prove that the bending stiffness, the cable forces, and the crossing point position can be separately identified from a set of observed frequencies. The implemented procedure is then applied to the tested bridge as a proof of concept, showing that the proposed in-plane identification strategy provides satisfactory results.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":"87 1","pages":"0"},"PeriodicalIF":5.7000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14759217231186957","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The regular monitoring of cable forces is essential for ensuring the safety of cable structures both during construction and throughout their lifetime. This paper aims at developing a vibration-based identification procedure of the axial forces, bending stiffness, and, secondarily, the crossing point position of cable networks. A model constituted by two crossing stays having small bending stiffness and negligible sag effects is considered. The in-plane direct dynamic problem is solved both numerically and through a perturbation approach. The obtained results are compared to the outcomes of a finite element model for verification purposes. The theoretical studies are also supported by experimental tests performed on a real cable-stayed bridge (Haccourt bridge), which provide insights into the dynamics of the system showing that models of cables with small bending stiffness are more appropriate than taut string models. The inverse analysis based on non-linear Bayesian regression is developed and the closed-form asymptotic formulations are used to prove that the bending stiffness, the cable forces, and the crossing point position can be separately identified from a set of observed frequencies. The implemented procedure is then applied to the tested bridge as a proof of concept, showing that the proposed in-plane identification strategy provides satisfactory results.
期刊介绍:
Structural Health Monitoring is an international peer reviewed journal that publishes the highest quality original research that contain theoretical, analytical, and experimental investigations that advance the body of knowledge and its application in the discipline of structural health monitoring.