{"title":"Isatin Derivatives: A Frontier in Antimicrobial Agents","authors":"Shareef Shaikh, Manish Chaudhary, Charanjit Kaur, Rajesh Kumar, Gurvinder Singh","doi":"10.2174/0115701786268852230921113433","DOIUrl":null,"url":null,"abstract":"Abstract: Microbial infection is one of the major concerns for human health in the modern era. Condition is further worsening due to the development of resistance by the microbe against the available drugs. This problem can be overcome by synthesizing novel antimicrobial agents. Isatin is a promising moiety possessing antimicrobial activity. A number of isatin derivatives are present in the market for the treatment of microbial infection. In this review, we have tried to summarize isatin derivatives as antimicrobials, including numerous potent isatin analogs. The reported literature related to the development and application of isatin derivatives have been collected from electronic data bases like Science Direct, Google Scholar, and PubMed by using key words like “design, synthesis and evaluation”, “isatin derivatives,” and “indoldione analogues” and related combinations. It was identified that isatin derivatives play an essential role in drug discovery and development. In recent years, isatin and its derivatives have shown promising antibacterial and antiviral properties. This review aims to provide an overview of the current research on isatin potential applications. Studies have shown that isatin derivatives can effectively fight against various types of microorganisms, such as gram-negative and gram-positive bacteria. They also exhibit lower toxicity and better efficacy than standard antimicrobial agents. Moreover, isatin-based products have the potential to address the rising issue of antimicrobial resistance. The current work attempts to review such innovations, which may lead to the creation of novel therapeutic agents. More research is required to confirm their safety and effectiveness in clinical practice.","PeriodicalId":18116,"journal":{"name":"Letters in Organic Chemistry","volume":"2 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Organic Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115701786268852230921113433","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Microbial infection is one of the major concerns for human health in the modern era. Condition is further worsening due to the development of resistance by the microbe against the available drugs. This problem can be overcome by synthesizing novel antimicrobial agents. Isatin is a promising moiety possessing antimicrobial activity. A number of isatin derivatives are present in the market for the treatment of microbial infection. In this review, we have tried to summarize isatin derivatives as antimicrobials, including numerous potent isatin analogs. The reported literature related to the development and application of isatin derivatives have been collected from electronic data bases like Science Direct, Google Scholar, and PubMed by using key words like “design, synthesis and evaluation”, “isatin derivatives,” and “indoldione analogues” and related combinations. It was identified that isatin derivatives play an essential role in drug discovery and development. In recent years, isatin and its derivatives have shown promising antibacterial and antiviral properties. This review aims to provide an overview of the current research on isatin potential applications. Studies have shown that isatin derivatives can effectively fight against various types of microorganisms, such as gram-negative and gram-positive bacteria. They also exhibit lower toxicity and better efficacy than standard antimicrobial agents. Moreover, isatin-based products have the potential to address the rising issue of antimicrobial resistance. The current work attempts to review such innovations, which may lead to the creation of novel therapeutic agents. More research is required to confirm their safety and effectiveness in clinical practice.
期刊介绍:
Aims & Scope
Letters in Organic Chemistry publishes original letters (short articles), research articles, mini-reviews and thematic issues based on mini-reviews and short articles, in all areas of organic chemistry including synthesis, bioorganic, medicinal, natural products, organometallic, supramolecular, molecular recognition and physical organic chemistry. The emphasis is to publish quality papers rapidly by taking full advantage of latest technology for both submission and review of the manuscripts.
The journal is an essential reading for all organic chemists belonging to both academia and industry.