Modelling of Direct Current (DC) Motor for Performance Improvement using Model Parameter Estimation

Ojonugwa Adukwu, Olurotimi Akintunde Dehunsi, Kanisuru Adeyeri
{"title":"Modelling of Direct Current (DC) Motor for Performance Improvement using Model Parameter Estimation","authors":"Ojonugwa Adukwu, Olurotimi Akintunde Dehunsi, Kanisuru Adeyeri","doi":"10.61448/jerisd12235","DOIUrl":null,"url":null,"abstract":"A key concern with the optimal use of direct current (DC) motor is model updates. In this article, DC motor models from probability density function (PDF) data have been obtained using the system identification method in MATLAB. At first, noise-free input and output data were used to obtain the parameters of the AutoRegressive with eXogenous input (ARX) model structure. Thereafter, the DC motor subjected to random noise had its input and output data used to obtain the ARX model parameters. However, the resulting model from the noisy data differed from the noise-free data model. To minimize this difference, 200 input/output data set for the noisy DC motor were generated and used to obtain the model parameter for each data set. The mean of the 200 data set was obtained, and the resulting model approached the noise-free model as much as possible. The root-mean-squared error of prediction stands at 3.9426E-17, 3.35E-2, and 3.15E-2 for noise-free, noisy, and mean of noisy DC motor model, respectively, showing accuracy of result for noise-free system. The article provides a way by which the model of the DC motor can be updated when it is not convenient or possible to measure the DC motor parameters when used for motion actuation. The parameters of the selected model structure are therefore estimated from the DC motor input/output data instead of the DC motor parameters itself.","PeriodicalId":484452,"journal":{"name":"Journal Of Engineering Research Innovation And Scientific Development","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal Of Engineering Research Innovation And Scientific Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61448/jerisd12235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A key concern with the optimal use of direct current (DC) motor is model updates. In this article, DC motor models from probability density function (PDF) data have been obtained using the system identification method in MATLAB. At first, noise-free input and output data were used to obtain the parameters of the AutoRegressive with eXogenous input (ARX) model structure. Thereafter, the DC motor subjected to random noise had its input and output data used to obtain the ARX model parameters. However, the resulting model from the noisy data differed from the noise-free data model. To minimize this difference, 200 input/output data set for the noisy DC motor were generated and used to obtain the model parameter for each data set. The mean of the 200 data set was obtained, and the resulting model approached the noise-free model as much as possible. The root-mean-squared error of prediction stands at 3.9426E-17, 3.35E-2, and 3.15E-2 for noise-free, noisy, and mean of noisy DC motor model, respectively, showing accuracy of result for noise-free system. The article provides a way by which the model of the DC motor can be updated when it is not convenient or possible to measure the DC motor parameters when used for motion actuation. The parameters of the selected model structure are therefore estimated from the DC motor input/output data instead of the DC motor parameters itself.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型参数估计的直流电机性能改进建模
最佳使用直流(DC)电机的一个关键问题是模型更新。本文利用MATLAB中的系统辨识方法,从概率密度函数(PDF)数据中得到直流电机模型。首先,利用无噪声输入和输出数据获得带有外生输入的自回归(AutoRegressive with eXogenous input, ARX)模型结构的参数。然后,将受随机噪声影响的直流电动机的输入和输出数据用于获取ARX模型参数。然而,从有噪声数据得到的模型与无噪声数据模型不同。为了最小化这一差异,我们生成了噪声直流电机的200个输入/输出数据集,并用于获取每个数据集的模型参数。得到200个数据集的均值,所得模型尽可能接近无噪声模型。有噪声直流电机模型的无噪声、有噪声和均值预测的均方根误差分别为3.9426E-17、3.35E-2和3.15E-2,表明无噪声系统预测结果的准确性。本文提供了一种在不方便或不可能测量运动驱动的直流电动机参数时,可以更新直流电动机模型的方法。因此,所选模型结构的参数是从直流电机输入/输出数据而不是直流电机参数本身估计出来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Techno-Economic Modelling of Bioclarified Water Recovery from Petroleum Wastewater Using ASPEN Software and Box-Behnken Design Development of an Ultrasonic-based Digital Height Measurement System Development of an Ultrasonic-based Digital Height Measurement System Application of GIS and HEC-RAS for flood risk assessment of Ofu River catchment in Nigeria Exergy Audit of Thermodynamic Parameters and Performance Analysis of OgorodeThermal Power Plant in Delta State, Nigeria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1