The analysis of coffee-green tea-turmeric combination against cardiac-metabolic syndrome using metabolite profiling, gene expression, and in silico approach

IF 1.2 Q4 PHARMACOLOGY & PHARMACY Journal of Pharmacy & Pharmacognosy Research Pub Date : 2023-11-01 DOI:10.56499/jppres23.1702_11.6.961
Ermin Rachmawati, Mohammad S. Rohman, Nashi Widodo, Mifetika Lukitasari, Dwi A. Nugroho, Feri E. Hermanto, Mukhamad N. Kholis
{"title":"The analysis of coffee-green tea-turmeric combination against cardiac-metabolic syndrome using metabolite profiling, gene expression, and in silico approach","authors":"Ermin Rachmawati, Mohammad S. Rohman, Nashi Widodo, Mifetika Lukitasari, Dwi A. Nugroho, Feri E. Hermanto, Mukhamad N. Kholis","doi":"10.56499/jppres23.1702_11.6.961","DOIUrl":null,"url":null,"abstract":"Context: The development of functional drinks to inhibit oxidative stress and inflammation as a critical process in inducing heart damage in metabolic syndrome is required. Coffee, tea, and turmeric have all been shown to offer health advantages. Aims: To investigate the effect of coffee, green tea, turmeric extract (ECGTT) against cardiac-metabolic syndrome (MetS). Methods: The secondary metabolites from coffee, green tea, and turmeric were identified using LC-HRMS. Male Sprague–Dawley rats were divided into four groups (n = 4) representing normal, MetS, MetS with ECGTT treatment doses: 300/100/150 mg/BW and 300/100/250 mg/BW group. Upon the end of treatment periods, expression of tumor necrosis factor-alpha (TNFα), interleukin-6 (IL-6), nuclear factor kappa B (NF-κB), NADPH oxidase (NOX2), SERCA2a were measured from the heart. A computational approach including network pharmacology, protein-protein interaction (PPI) network, molecular docking, and dynamic was performed to understand the molecular mechanism of ECGTT against cardiac damage in MetS. Results: Chlorogenic acid (CGA), epigallocatechin gallate (EGCG), and curcumin were identified as the main metabolites in ECGTT. The ECGTT administration decreased the TNFα, IL-6, NF-κB, and NOX2 and increased SERCA2a expression(p<0.05). Moreover, the PPI result suggested that angiotensin II receptor type 1 (AGTR1) was the key regulator of cardiac injury-MetS induced. CGA, EGCG, and curcumin bind to AGTR1 with smaller binding energy than metformin and showed stability of structure and interaction among those metabolites into AGTR1. Conclusions: Coffee, green tea, and turmeric might prevent heart dysfunction in MetS through modulation of oxidative stress and inflammation.","PeriodicalId":43917,"journal":{"name":"Journal of Pharmacy & Pharmacognosy Research","volume":"28 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacy & Pharmacognosy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56499/jppres23.1702_11.6.961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Context: The development of functional drinks to inhibit oxidative stress and inflammation as a critical process in inducing heart damage in metabolic syndrome is required. Coffee, tea, and turmeric have all been shown to offer health advantages. Aims: To investigate the effect of coffee, green tea, turmeric extract (ECGTT) against cardiac-metabolic syndrome (MetS). Methods: The secondary metabolites from coffee, green tea, and turmeric were identified using LC-HRMS. Male Sprague–Dawley rats were divided into four groups (n = 4) representing normal, MetS, MetS with ECGTT treatment doses: 300/100/150 mg/BW and 300/100/250 mg/BW group. Upon the end of treatment periods, expression of tumor necrosis factor-alpha (TNFα), interleukin-6 (IL-6), nuclear factor kappa B (NF-κB), NADPH oxidase (NOX2), SERCA2a were measured from the heart. A computational approach including network pharmacology, protein-protein interaction (PPI) network, molecular docking, and dynamic was performed to understand the molecular mechanism of ECGTT against cardiac damage in MetS. Results: Chlorogenic acid (CGA), epigallocatechin gallate (EGCG), and curcumin were identified as the main metabolites in ECGTT. The ECGTT administration decreased the TNFα, IL-6, NF-κB, and NOX2 and increased SERCA2a expression(p<0.05). Moreover, the PPI result suggested that angiotensin II receptor type 1 (AGTR1) was the key regulator of cardiac injury-MetS induced. CGA, EGCG, and curcumin bind to AGTR1 with smaller binding energy than metformin and showed stability of structure and interaction among those metabolites into AGTR1. Conclusions: Coffee, green tea, and turmeric might prevent heart dysfunction in MetS through modulation of oxidative stress and inflammation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用代谢物谱、基因表达和计算机方法分析咖啡-绿茶-姜黄组合对心脏代谢综合征的作用
背景:需要开发功能饮料来抑制氧化应激和炎症,这是代谢综合征诱导心脏损伤的关键过程。咖啡、茶和姜黄都被证明对健康有益。目的:探讨咖啡、绿茶、姜黄提取物(ECGTT)对心脏代谢综合征(MetS)的影响。方法:采用液相色谱质谱法对咖啡、绿茶和姜黄的次生代谢产物进行鉴定。雄性Sprague-Dawley大鼠分为4组(n = 4),分别为正常组、MetS组、MetS组,ECGTT治疗剂量分别为300/100/150 mg/BW组和300/100/250 mg/BW组。治疗结束后,检测肿瘤坏死因子- α (TNFα)、白细胞介素-6 (IL-6)、核因子κB (NF-κB)、NADPH氧化酶(NOX2)、SERCA2a的表达。通过网络药理学、蛋白-蛋白相互作用(PPI)网络、分子对接和动力学等计算方法,了解ECGTT抗MetS心脏损伤的分子机制。结果:ECGTT主要代谢产物为绿原酸(CGA)、没食子儿茶素没食子酸酯(EGCG)和姜黄素。ECGTT使TNFα、IL-6、NF-κB、NOX2表达降低,SERCA2a表达升高(p < 0.05)。此外,PPI结果提示血管紧张素II受体1型(AGTR1)是mets诱导的心脏损伤的关键调节因子。与二甲双胍相比,CGA、EGCG和姜黄素以更小的结合能与AGTR1结合,并表现出结构稳定性和与AGTR1相互作用。结论:咖啡、绿茶和姜黄可能通过调节氧化应激和炎症来预防MetS患者的心脏功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
20.00%
发文量
0
审稿时长
8 weeks
期刊介绍: The Journal of Pharmacy & Pharmacognosy Research (JPPRes) is an international, specialized and peer-reviewed open access journal, under the auspices of AVAGAX – Diseño, Publicidad y Servicios Informáticos, which publishes studies in the pharmaceutical and herbal fields concerned with the physical, botanical, chemical, biological, toxicological properties and clinical applications of molecular entities, active pharmaceutical ingredients, devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture, evaluation and marketing. This journal publishes research papers, reviews, commentaries and letters to the editor as well as special issues and review of pre-and post-graduate thesis from pharmacists or professionals involved in Pharmaceutical Sciences or Pharmacognosy.
期刊最新文献
Check update pattern of tumorigenic vasculature signature based on MMP9 and CXCR4 expression in locally advanced breast cancer Bioactive compound and chemical characterization of lactic acid bacteria from fermented food as bio-preservative agents to control food-borne pathogens Integrated RNA-sequencing and network analysis approach to identify the Hub genes and vital pathways associated with gastric cancer Central nervous system depressant effect of ethanol extract of Senna spectabilis (DC.) H.S.Irwin & Barneby in mice Natural deep eutectic solvent extraction of xanthorrhizol and curcuminoids from Curcuma xanthorrhiza Roxb and simultaneous determination by high-performance liquid chromatography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1