{"title":"Microscopic study of submonolayer nucleation characteristics during GaN (0001) homoepitaxial growth","authors":"Peng Su, Wensen Ai, Xuejiang Chen, Lijun Liu","doi":"10.1116/6.0003115","DOIUrl":null,"url":null,"abstract":"An on-lattice kinetic Monte Carlo model is constructed to investigate microscopic nucleation behavior during the submonolayer epitaxial growth of GaN islands, where the Ga and N atoms are treated as the basic particles. The input kinetic parameters of Ga and N, including their surface diffusion energy barriers, were obtained from previous ab initio calculations. Furthermore, a simple and effective bond counting rule is applied in our kinetic Monte Carlo model, and the statistics of the GaN islands on the surface are realized via the application of the Hoshen–Kopelman algorithm. The growth temperature range covers the typical growth temperatures used in the molecular beam epitaxy of GaN. The results obtained show that triangular GaN flakes are observed and that the shapes of the GaN islands remain triangular when the growth temperature is changed. Additionally, the power law for the maximum density of islands versus the ratio of the effective diffusion to the deposition rate is obtained; the exponent of this law is −0.506 ± 0.006, indicating that these triplets represent the seeds required for further nucleation. Finally, the coexistence of the Ga-edge and N-edge types of triangular GaN islands is observed. The island formation mechanism is attributed to a local monomer density misbalance, and it is also shown that a slight variation in the Ga/N ratio in the deposition flux changes the proportion of the Ga-edge and N-edge type triangles; this represents a further indication that controllable GaN morphologies can be obtained by tuning the chemical potentials of the constituent elements.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"66 2","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003115","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
An on-lattice kinetic Monte Carlo model is constructed to investigate microscopic nucleation behavior during the submonolayer epitaxial growth of GaN islands, where the Ga and N atoms are treated as the basic particles. The input kinetic parameters of Ga and N, including their surface diffusion energy barriers, were obtained from previous ab initio calculations. Furthermore, a simple and effective bond counting rule is applied in our kinetic Monte Carlo model, and the statistics of the GaN islands on the surface are realized via the application of the Hoshen–Kopelman algorithm. The growth temperature range covers the typical growth temperatures used in the molecular beam epitaxy of GaN. The results obtained show that triangular GaN flakes are observed and that the shapes of the GaN islands remain triangular when the growth temperature is changed. Additionally, the power law for the maximum density of islands versus the ratio of the effective diffusion to the deposition rate is obtained; the exponent of this law is −0.506 ± 0.006, indicating that these triplets represent the seeds required for further nucleation. Finally, the coexistence of the Ga-edge and N-edge types of triangular GaN islands is observed. The island formation mechanism is attributed to a local monomer density misbalance, and it is also shown that a slight variation in the Ga/N ratio in the deposition flux changes the proportion of the Ga-edge and N-edge type triangles; this represents a further indication that controllable GaN morphologies can be obtained by tuning the chemical potentials of the constituent elements.
期刊介绍:
Journal of Vacuum Science & Technology A publishes reports of original research, letters, and review articles that focus on fundamental scientific understanding of interfaces, surfaces, plasmas and thin films and on using this understanding to advance the state-of-the-art in various technological applications.