{"title":"Combining PARP Inhibition and Immunotherapy in BRCA-Associated Cancers.","authors":"Geoffrey I Shapiro, Suzanne M Barry","doi":"10.1007/978-3-031-30065-3_12","DOIUrl":null,"url":null,"abstract":"<p><p>Poly (ADP-ribose) polymerase (PARP) inhibitors have significantly improved treatment outcomes of homologous recombination (HR) repair-deficient cancers. While the activity of these agents is largely linked to multiple mechanisms underlying the synthetic lethality of PARP inhibition and HR deficiency, emerging data suggest that their efficacy is also tied to their effects on the immune microenvironment and dependent upon cytotoxic T-cell activation. Effects observed in preclinical models are currently being validated in on-treatment biopsy samples procured from patients enrolled in clinical trials. Although this work has stimulated the development of combinations of PARP inhibitors with immunomodulatory agents, results to date have not demonstrated the superiority of combined PARP inhibition and immune checkpoint blockade compared with PARP inhibition alone. These results have stimulated a more comprehensive assessment of the immunosuppressive components of the tumor microenvironment that must be addressed so that the efficacy of PARP inhibitor agents can be maximized.</p>","PeriodicalId":9486,"journal":{"name":"Cancer treatment and research","volume":"186 ","pages":"207-221"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer treatment and research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-30065-3_12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors have significantly improved treatment outcomes of homologous recombination (HR) repair-deficient cancers. While the activity of these agents is largely linked to multiple mechanisms underlying the synthetic lethality of PARP inhibition and HR deficiency, emerging data suggest that their efficacy is also tied to their effects on the immune microenvironment and dependent upon cytotoxic T-cell activation. Effects observed in preclinical models are currently being validated in on-treatment biopsy samples procured from patients enrolled in clinical trials. Although this work has stimulated the development of combinations of PARP inhibitors with immunomodulatory agents, results to date have not demonstrated the superiority of combined PARP inhibition and immune checkpoint blockade compared with PARP inhibition alone. These results have stimulated a more comprehensive assessment of the immunosuppressive components of the tumor microenvironment that must be addressed so that the efficacy of PARP inhibitor agents can be maximized.