{"title":"Development of Homologous Recombination Functional Assays for Targeting the DDR.","authors":"Ailsa J Oswald, Charlie Gourley","doi":"10.1007/978-3-031-30065-3_4","DOIUrl":null,"url":null,"abstract":"<p><p>Identification of tumours that have homologous recombination deficiency (HRD) has become of increasing interest following the licensing of PARP inhibitors. Potential methods to assess HRD status include; clinical selection for platinum sensitive disease, mutational/methylation status, genomic scars/signature and functional RAD51 assays. Homologous recombination (HR) is a dynamic process with the potential to evolve over a disease course, particularly in relation to previous treatment. This is one of the major drawbacks of genomic scars/signatures, as they only demonstrate historic HR status. Functional HR assays have the benefit of giving a real time HR status readout and therefore have the potential for clearer identification of patients who may benefit from PARP inhibitors at that specific time point. However, the development of RAD51 foci assays ready for clinical practice has been challenging. Pre-clinical considerations have included; controlling for variation in tumour proliferation, tissue type and whether DNA damage induction is required. Furthermore, the assays require correlation with clinical outcomes, an understanding of how they complement current testing modalities and validation of test performance in large cohorts. Despite these challenges, given the profound benefit from PARP inhibitors seen in those with an HRD phenotype to date, the ongoing development and validation of these functional HR assays remains of high clinical importance.</p>","PeriodicalId":9486,"journal":{"name":"Cancer treatment and research","volume":"186 ","pages":"43-70"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer treatment and research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-30065-3_4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Identification of tumours that have homologous recombination deficiency (HRD) has become of increasing interest following the licensing of PARP inhibitors. Potential methods to assess HRD status include; clinical selection for platinum sensitive disease, mutational/methylation status, genomic scars/signature and functional RAD51 assays. Homologous recombination (HR) is a dynamic process with the potential to evolve over a disease course, particularly in relation to previous treatment. This is one of the major drawbacks of genomic scars/signatures, as they only demonstrate historic HR status. Functional HR assays have the benefit of giving a real time HR status readout and therefore have the potential for clearer identification of patients who may benefit from PARP inhibitors at that specific time point. However, the development of RAD51 foci assays ready for clinical practice has been challenging. Pre-clinical considerations have included; controlling for variation in tumour proliferation, tissue type and whether DNA damage induction is required. Furthermore, the assays require correlation with clinical outcomes, an understanding of how they complement current testing modalities and validation of test performance in large cohorts. Despite these challenges, given the profound benefit from PARP inhibitors seen in those with an HRD phenotype to date, the ongoing development and validation of these functional HR assays remains of high clinical importance.