The selective NOX4 inhibitor GLX7013159 decreases blood glucose concentrations and human beta-cell apoptotic rates in diabetic NMRI nu/nu mice transplanted with human islets.

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Free Radical Research Pub Date : 2023-05-01 Epub Date: 2023-12-26 DOI:10.1080/10715762.2023.2284637
Andris Elksnis, Nils Welsh, Per Wikström, Joey Lau, Per-Ola Carlsson
{"title":"The selective NOX4 inhibitor GLX7013159 decreases blood glucose concentrations and human beta-cell apoptotic rates in diabetic NMRI nu/nu mice transplanted with human islets.","authors":"Andris Elksnis, Nils Welsh, Per Wikström, Joey Lau, Per-Ola Carlsson","doi":"10.1080/10715762.2023.2284637","DOIUrl":null,"url":null,"abstract":"<p><p>NADPH oxidase 4 (NOX4) inhibition has been reported to mitigate diabetes-induced beta-cell dysfunction and improve survival <i>in vitro</i>, as well as counteract high-fat diet-induced glucose intolerance in mice. We investigated the antidiabetic effects of the selective NOX4 inhibitor GLX7013159 <i>in vivo</i> in athymic diabetic mice transplanted with human islets over a period of 4 weeks. The GLX7013159-treated mice achieved lower blood glucose and water consumption throughout the treatment period. Furthermore, GLX7013159 treatment resulted in improved insulin and c-peptide levels, better insulin secretion capacity, as well as in greatly reduced apoptotic rates of the insulin-positive human cells, measured as colocalization of insulin and cleaved caspase-3. We conclude that the antidiabetic effects of NOX4 inhibition by GLX7013159 are observed also during a prolonged study period <i>in vivo</i> and are likely to be due to an improved survival and function of the human beta-cells.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2023.2284637","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

NADPH oxidase 4 (NOX4) inhibition has been reported to mitigate diabetes-induced beta-cell dysfunction and improve survival in vitro, as well as counteract high-fat diet-induced glucose intolerance in mice. We investigated the antidiabetic effects of the selective NOX4 inhibitor GLX7013159 in vivo in athymic diabetic mice transplanted with human islets over a period of 4 weeks. The GLX7013159-treated mice achieved lower blood glucose and water consumption throughout the treatment period. Furthermore, GLX7013159 treatment resulted in improved insulin and c-peptide levels, better insulin secretion capacity, as well as in greatly reduced apoptotic rates of the insulin-positive human cells, measured as colocalization of insulin and cleaved caspase-3. We conclude that the antidiabetic effects of NOX4 inhibition by GLX7013159 are observed also during a prolonged study period in vivo and are likely to be due to an improved survival and function of the human beta-cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
选择性NOX4抑制剂GLX7013159降低了移植人胰岛的糖尿病NMRI nu/nu小鼠的血糖浓度和人β细胞凋亡率。
据报道,抑制NADPH氧化酶4 (NOX4)可减轻糖尿病诱导的β细胞功能障碍,提高体外存活率,并可对抗高脂肪饮食诱导的小鼠葡萄糖耐受不良。我们研究了选择性NOX4抑制剂GLX7013159在人胰岛移植的胸腺型糖尿病小鼠体内的抗糖尿病作用,为期4周。glx7013159治疗的小鼠在整个治疗期间血糖和水的消耗都较低。此外,GLX7013159治疗可改善胰岛素和c肽水平,改善胰岛素分泌能力,并大大降低胰岛素阳性人细胞的凋亡率(通过胰岛素和裂解caspase-3的共定位来测量)。我们得出结论,GLX7013159抑制NOX4的抗糖尿病作用也在体内长期研究中观察到,并且可能是由于改善了人类β细胞的存活和功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
期刊最新文献
Accumulation of polyunsaturated lipids fuels ferroptosis to promote liver failure after extended hepatectomy in mice. Ferritin with methylglyoxal produces reactive oxygen species but remains functional. Cutting-edge insights into Helicobacter research. Protective effect of alpha-tocopherol on lipogenesis and oxysterol production in hypercholesterolemia-induced nonalcoholic steatohepatitis. Redox factors in the antioxidant activity of nitroxides toward DNA guanyl and 2-deoxyribose-peroxyl radicals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1