A Simple and Rapid High-Performance Liquid Chromatography Method for Preparation and Content Detection of the Mainly Numbing Taste Substances of Zanthoxylum bungeanum Maxim.
Zixu Wang, Yue Liu, Guoqing Sun, Liu Yang, Shuai Huang, Lin Chen, Xianli Zhou
{"title":"A Simple and Rapid High-Performance Liquid Chromatography Method for Preparation and Content Detection of the Mainly Numbing Taste Substances of Zanthoxylum bungeanum Maxim.","authors":"Zixu Wang, Yue Liu, Guoqing Sun, Liu Yang, Shuai Huang, Lin Chen, Xianli Zhou","doi":"10.1093/chromsci/bmad087","DOIUrl":null,"url":null,"abstract":"<p><p>As the characteristic numbing taste substances, hydroxyl-α-sanshool (HAS) and hydroxyl-β-sanshool (HBS) were considered vital indicators to evaluate the quality of Zanthoxylum bungeanum Maxim. However, it is very difficult to obtain their high-purity monomers individually, as the only difference between HAS and HBS is that C-6 cis-trans isomerism. In our study, a simple and rapid Ag +-HPLC method was developed to pure the standard chemicals of Z. bungeanum with numbing taste, and 1H NMR and 13C NMR were employed to determine the purity and structure. Moreover, an HPLC method was established to determine the content of numbing taste components of 16 varieties of Z. bungeanum from different regions. The analytical methods were validated for accuracy, precision, and linearity, respectively. The validated method was accurate (spiked recoveries 0.94-1.10), precise in terms of peak area (intra-day RSDs <1.25% and inter-day RSDs <1.61%), and linear (r2 ≥ 0.999). It was found that there were significant differences in the content of HAS and HBS among different types of Z. bungeanum, with HAS content ranging from 60.06 ± 1.14 to 164.13 ± 3.28 mg/g and HBS ranging from 7.81 ± 0.36 to 21.11 ± 0.75 mg/g. The RSDs of HAS range were 1.73-3.80% and that of HBS range 2.03-4.73% (RSDs ≤5%), which indicated that the measurements of HAS and HBS were reliable.</p>","PeriodicalId":15430,"journal":{"name":"Journal of chromatographic science","volume":" ","pages":"426-431"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chromatographic science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chromsci/bmad087","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
As the characteristic numbing taste substances, hydroxyl-α-sanshool (HAS) and hydroxyl-β-sanshool (HBS) were considered vital indicators to evaluate the quality of Zanthoxylum bungeanum Maxim. However, it is very difficult to obtain their high-purity monomers individually, as the only difference between HAS and HBS is that C-6 cis-trans isomerism. In our study, a simple and rapid Ag +-HPLC method was developed to pure the standard chemicals of Z. bungeanum with numbing taste, and 1H NMR and 13C NMR were employed to determine the purity and structure. Moreover, an HPLC method was established to determine the content of numbing taste components of 16 varieties of Z. bungeanum from different regions. The analytical methods were validated for accuracy, precision, and linearity, respectively. The validated method was accurate (spiked recoveries 0.94-1.10), precise in terms of peak area (intra-day RSDs <1.25% and inter-day RSDs <1.61%), and linear (r2 ≥ 0.999). It was found that there were significant differences in the content of HAS and HBS among different types of Z. bungeanum, with HAS content ranging from 60.06 ± 1.14 to 164.13 ± 3.28 mg/g and HBS ranging from 7.81 ± 0.36 to 21.11 ± 0.75 mg/g. The RSDs of HAS range were 1.73-3.80% and that of HBS range 2.03-4.73% (RSDs ≤5%), which indicated that the measurements of HAS and HBS were reliable.
期刊介绍:
The Journal of Chromatographic Science is devoted to the dissemination of information concerning all methods of chromatographic analysis. The standard manuscript is a description of recent original research that covers any or all phases of a specific separation problem, principle, or method. Manuscripts which have a high degree of novelty and fundamental significance to the field of separation science are particularly encouraged. It is expected the authors will clearly state in the Introduction how their method compares in some markedly new and improved way to previous published related methods. Analytical performance characteristics of new methods including sensitivity, tested limits of detection or quantification, accuracy, precision, and specificity should be provided. Manuscripts which describe a straightforward extension of a known analytical method or an application to a previously analyzed and/or uncomplicated sample matrix will not normally be reviewed favorably. Manuscripts in which mass spectrometry is the dominant analytical method and chromatography is of marked secondary importance may be declined.