Synthetic peptides of IL-1Ra and HSP70 have anti-inflammatory activity on human primary monocytes and macrophages: Potential treatments for inflammatory diseases
Alba Pensado-López PhD , Aldo Ummarino PhD Student , Sophia Khan PhD , Anna Guildford PhD , Iain U. Allan PhD , Matteo Santin PhD , Nathalie Chevallier PhD , Elina Varaillon MSc, PhD , Elizaveta Kon MD , Paola Allavena MD , Fernando Torres Andón PhD
{"title":"Synthetic peptides of IL-1Ra and HSP70 have anti-inflammatory activity on human primary monocytes and macrophages: Potential treatments for inflammatory diseases","authors":"Alba Pensado-López PhD , Aldo Ummarino PhD Student , Sophia Khan PhD , Anna Guildford PhD , Iain U. Allan PhD , Matteo Santin PhD , Nathalie Chevallier PhD , Elina Varaillon MSc, PhD , Elizaveta Kon MD , Paola Allavena MD , Fernando Torres Andón PhD","doi":"10.1016/j.nano.2023.102719","DOIUrl":null,"url":null,"abstract":"<div><p>Chronic inflammatory diseases are increasing in developed societies, thus new anti-inflammatory approaches are needed in the clinic. Synthetic peptides complexes can be designed to mimic the activity of anti-inflammatory mediators, in order to alleviate inflammation. Here, we evaluated the anti-inflammatory efficacy of tethered peptides mimicking the interleukin-1 receptor antagonist (IL-1Ra) and the heat-shock protein 70 (HSP70). We tested their biocompatibility and anti-inflammatory activity <em>in vitro</em> in primary human monocytes and differentiated macrophages activated with two different stimuli: the TLR agonists (LPS + IFN-γ) or Pam3CSK4. Our results demonstrate that IL-1Ra and HSP70 synthetic peptides present a satisfactory biocompatible profile and significantly inhibit the secretion of several pro-inflammatory cytokines (IL-6, IL-8, IL-1β and TNFα). We further confirmed their anti-inflammatory activity when peptides were coated on a biocompatible material commonly employed in surgical implants. Overall, our findings support the potential use of IL-1Ra and HSP70 synthetic peptides for the treatment of inflammatory conditions.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"55 ","pages":"Article 102719"},"PeriodicalIF":4.2000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1549963423000709/pdfft?md5=db574adb339ebde7fdc666e5c0535ad9&pid=1-s2.0-S1549963423000709-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963423000709","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic inflammatory diseases are increasing in developed societies, thus new anti-inflammatory approaches are needed in the clinic. Synthetic peptides complexes can be designed to mimic the activity of anti-inflammatory mediators, in order to alleviate inflammation. Here, we evaluated the anti-inflammatory efficacy of tethered peptides mimicking the interleukin-1 receptor antagonist (IL-1Ra) and the heat-shock protein 70 (HSP70). We tested their biocompatibility and anti-inflammatory activity in vitro in primary human monocytes and differentiated macrophages activated with two different stimuli: the TLR agonists (LPS + IFN-γ) or Pam3CSK4. Our results demonstrate that IL-1Ra and HSP70 synthetic peptides present a satisfactory biocompatible profile and significantly inhibit the secretion of several pro-inflammatory cytokines (IL-6, IL-8, IL-1β and TNFα). We further confirmed their anti-inflammatory activity when peptides were coated on a biocompatible material commonly employed in surgical implants. Overall, our findings support the potential use of IL-1Ra and HSP70 synthetic peptides for the treatment of inflammatory conditions.
期刊介绍:
The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine.
Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.