A single shell protein plays a major role in choline transport across the shell of the choline utilization microcompartment of Escherichia coli 536.

IF 2.6 4区 生物学 Q3 MICROBIOLOGY Microbiology-Sgm Pub Date : 2023-11-01 DOI:10.1099/mic.0.001413
Jessica M Ochoa, Philip Dershwitz, Mary Schappert, Sharmistha Sinha, Taylor I Herring, Todd O Yeates, Thomas A Bobik
{"title":"A single shell protein plays a major role in choline transport across the shell of the choline utilization microcompartment of <i>Escherichia coli</i> 536.","authors":"Jessica M Ochoa, Philip Dershwitz, Mary Schappert, Sharmistha Sinha, Taylor I Herring, Todd O Yeates, Thomas A Bobik","doi":"10.1099/mic.0.001413","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial microcompartments (MCPs) are widespread protein-based organelles that play important roles in the global carbon cycle and in the physiology of diverse bacteria, including a number of pathogens. MCPs consist of metabolic enzymes encapsulated within a protein shell. The main roles of MCPs are to concentrate enzymes together with their substrates (to increase reaction rates) and to sequester harmful metabolic intermediates. Prior studies indicate that MCPs have a selectively permeable protein shell, but the mechanisms that allow selective transport across the shell are not fully understood. Here we examine transport across the shell of the choline utilization (Cut) MCP of <i>Escherichia coli</i> 536, which has not been studied before. The shell of the Cut MCP is unusual in consisting of one pentameric and four hexameric bacterial microcompartment (BMC) domain proteins. It lacks trimeric shell proteins, which are thought to be required for the transport of larger substrates and enzymatic cofactors. In addition, its four hexameric BMC domain proteins are very similar in amino acid sequence. This raises questions about how the Cut MCP mediates the selective transport of the substrate, products and cofactors of choline metabolism. In this report, site-directed mutagenesis is used to modify the central pores (the main transport channels) of all four Cut BMC hexamers to assess their transport roles. Our findings indicate that a single shell protein, CmcB, plays the major role in choline transport across the shell of the Cut MCP and that the electrostatic properties of the CmcB pore also impact choline transport. The implications of these findings with regard to the higher-order structure of MCPs are discussed.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"169 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10710832/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001413","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial microcompartments (MCPs) are widespread protein-based organelles that play important roles in the global carbon cycle and in the physiology of diverse bacteria, including a number of pathogens. MCPs consist of metabolic enzymes encapsulated within a protein shell. The main roles of MCPs are to concentrate enzymes together with their substrates (to increase reaction rates) and to sequester harmful metabolic intermediates. Prior studies indicate that MCPs have a selectively permeable protein shell, but the mechanisms that allow selective transport across the shell are not fully understood. Here we examine transport across the shell of the choline utilization (Cut) MCP of Escherichia coli 536, which has not been studied before. The shell of the Cut MCP is unusual in consisting of one pentameric and four hexameric bacterial microcompartment (BMC) domain proteins. It lacks trimeric shell proteins, which are thought to be required for the transport of larger substrates and enzymatic cofactors. In addition, its four hexameric BMC domain proteins are very similar in amino acid sequence. This raises questions about how the Cut MCP mediates the selective transport of the substrate, products and cofactors of choline metabolism. In this report, site-directed mutagenesis is used to modify the central pores (the main transport channels) of all four Cut BMC hexamers to assess their transport roles. Our findings indicate that a single shell protein, CmcB, plays the major role in choline transport across the shell of the Cut MCP and that the electrostatic properties of the CmcB pore also impact choline transport. The implications of these findings with regard to the higher-order structure of MCPs are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单个壳蛋白在大肠杆菌536胆碱利用微室的胆碱转运中起主要作用。
细菌微室(MCPs)是广泛存在的基于蛋白质的细胞器,在全球碳循环和多种细菌(包括许多病原体)的生理中发挥重要作用。mcp由包裹在蛋白质外壳内的代谢酶组成。MCPs的主要作用是浓缩酶及其底物(提高反应速率)和隔离有害的代谢中间体。先前的研究表明,MCPs具有选择性渗透的蛋白质外壳,但允许选择性转运的机制尚未完全了解。在这里,我们研究了大肠杆菌536的胆碱利用(Cut) MCP的外壳运输,这在以前没有研究过。Cut MCP的外壳不寻常,由一个五聚体和四个六聚体细菌微室(BMC)结构域蛋白组成。它缺乏三聚体壳蛋白,这被认为是运输较大底物和酶促辅助因子所必需的。此外,它的4个六聚体BMC结构域蛋白在氨基酸序列上非常相似。这就提出了关于Cut MCP如何介导胆碱代谢的底物、产物和辅助因子的选择性运输的问题。在本报告中,使用位点定向诱变来修饰所有四种Cut BMC六聚体的中心孔(主要运输通道),以评估它们的运输作用。我们的研究结果表明,单个壳蛋白CmcB在切割MCP壳的胆碱运输中起主要作用,并且CmcB孔的静电特性也影响胆碱运输。讨论了这些发现对mcp高阶结构的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbiology-Sgm
Microbiology-Sgm 生物-微生物学
CiteScore
4.60
自引率
7.10%
发文量
132
审稿时长
3.0 months
期刊介绍: We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms. Topics include but are not limited to: Antimicrobials and antimicrobial resistance Bacteriology and parasitology Biochemistry and biophysics Biofilms and biological systems Biotechnology and bioremediation Cell biology and signalling Chemical biology Cross-disciplinary work Ecology and environmental microbiology Food microbiology Genetics Host–microbe interactions Microbial methods and techniques Microscopy and imaging Omics, including genomics, proteomics and metabolomics Physiology and metabolism Systems biology and synthetic biology The microbiome.
期刊最新文献
Quantifying the fractal complexity of nutrient transport channels in Escherichia coli biofilms under varying cell shape and growth environment. Study of excess manganese stress response highlights the central role of manganese exporter Mnx for holding manganese homeostasis in the cyanobacterium Synechocystis sp. PCC 6803. Diversity pattern and antibiotic activity of microbial communities inhabiting a karst cave from Costa Rica. The PrfA regulon of Listeria monocytogenes is induced by growth in low-oxygen microaerophilic conditions. Agarooligosaccharides as a novel concept in prebiotics: selective inhibition of Ruminococcus gnavus and Fusobacterium nucleatum while preserving Bifidobacteria, Lactobacillales in vitro, and inhibiting Lachnospiraceae in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1