Effects of ionising radiation exposure in offspring and next generations: dosimetric aspects and uncertainties.

Ämilie Degenhardt, Sara Dumit, Augusto Giussani
{"title":"Effects of ionising radiation exposure in offspring and next generations: dosimetric aspects and uncertainties.","authors":"Ämilie Degenhardt, Sara Dumit, Augusto Giussani","doi":"10.1080/09553002.2023.2280017","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The impact of the exposure to ionizing radiation in the offspring and next generation has been investigated in the last decades and currently is the subject of study of the ICRP Task Group 121. Studying the effects of radiation exposure in pre-conceptional and post-conceptional phases can be a challenge since potential effects to the fetus vary depending on the stage of fetal development. Epidemiology and radiobiology studies are the two sources of information one can use to correlate the radiation dose to the human body and tissues and the resulting effects. For a proper evaluation of the outcomes of such studies, and a correct appraisal of the exposure/dose-effect relationship, (i) reliable dosimetry, (ii) accurate reporting, and (iii) reproducibility of results are required. Although variables related to dose, including for instance source of radiation, geometry of irradiation, dose rate etc., are usually known, especially in radiobiology studies, often important details of the irradiation are not reported.</p><p><strong>Conclusions: </strong>Based on standards developed by the National Cancer Institute (NCI), the National Institute of Allergy and Infectious Disease (NIAID) and the National Institute of Standards and Technology (NIST), a review of the scientific studies used by the UNSCEAR to estimate the risk of hereditary effects, and by the ICRP in its current recommendations, was conducted to evaluate the way dosimetry was reported. Dosimetry and the related uncertainties were not adequately described in the vast majority of those studies. This does not necessarily mean that they do not provide relevant information, however it prevents from a thorough verification and reproduction of their findings. In order to guarantee the reliability and robustness of the process of revision of the estimates of risk and detriment it is therefore considered mandatory to include a careful check of the new relevant literature with regard to the criteria on the completeness and reproducibility of the dosimetric information.</p>","PeriodicalId":94057,"journal":{"name":"International journal of radiation biology","volume":" ","pages":"1276-1282"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553002.2023.2280017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The impact of the exposure to ionizing radiation in the offspring and next generation has been investigated in the last decades and currently is the subject of study of the ICRP Task Group 121. Studying the effects of radiation exposure in pre-conceptional and post-conceptional phases can be a challenge since potential effects to the fetus vary depending on the stage of fetal development. Epidemiology and radiobiology studies are the two sources of information one can use to correlate the radiation dose to the human body and tissues and the resulting effects. For a proper evaluation of the outcomes of such studies, and a correct appraisal of the exposure/dose-effect relationship, (i) reliable dosimetry, (ii) accurate reporting, and (iii) reproducibility of results are required. Although variables related to dose, including for instance source of radiation, geometry of irradiation, dose rate etc., are usually known, especially in radiobiology studies, often important details of the irradiation are not reported.

Conclusions: Based on standards developed by the National Cancer Institute (NCI), the National Institute of Allergy and Infectious Disease (NIAID) and the National Institute of Standards and Technology (NIST), a review of the scientific studies used by the UNSCEAR to estimate the risk of hereditary effects, and by the ICRP in its current recommendations, was conducted to evaluate the way dosimetry was reported. Dosimetry and the related uncertainties were not adequately described in the vast majority of those studies. This does not necessarily mean that they do not provide relevant information, however it prevents from a thorough verification and reproduction of their findings. In order to guarantee the reliability and robustness of the process of revision of the estimates of risk and detriment it is therefore considered mandatory to include a careful check of the new relevant literature with regard to the criteria on the completeness and reproducibility of the dosimetric information.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电离辐射暴露对后代和下一代的影响:剂量学方面和不确定性。
目的:近几十年来,人们一直在研究电离辐射照射对后代和下一代的影响,目前这是ICRP第121工作组的研究主题。研究孕前和孕后阶段辐射暴露的影响可能是一个挑战,因为对胎儿的潜在影响因胎儿发育阶段而异。流行病学和放射生物学研究是人们可以用来将辐射剂量与人体和组织及其产生的影响联系起来的两个信息来源。为了正确评估这类研究的结果,并正确评估暴露/剂量效应关系,需要(i)可靠的剂量测定法,(ii)准确的报告,以及(iii)结果的可重复性。虽然与剂量有关的变数,包括例如辐射源、照射的几何形状、剂量率等,通常是已知的,特别是在放射生物学研究中,但辐照的重要细节往往没有报告。结论:根据国家癌症研究所(NCI)、国家过敏和传染病研究所(NIAID)和国家标准与技术研究所(NIST)制定的标准,对UNSCEAR用于估计遗传影响风险的科学研究以及ICRP在其当前建议中使用的科学研究进行了审查,以评估剂量学报告的方式。在这些研究中,绝大多数都没有充分描述剂量学和相关的不确定性。这并不一定意味着它们不提供有关资料,但这妨碍彻底核查和复制它们的调查结果。因此,为了保证对风险和危害估计的修订过程的可靠性和稳健性,认为有必要对有关剂量学资料的完整性和可重复性标准的新相关文献进行仔细检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In vitro regeneration and optimization of physical and chemical mutagenesis protocol in tuberose (Agave amica (Medik.) Thiede & Govaerts) cv. 'Arka Vaibhav'. Association of -607C/A (rs1946518) and -137G/C (rs187238) polymorphisms and immune response in radiation-exposed workers. Intravitreal melatonin for the prevention of radiation retinopathy: a step beyond bevacizumab. FASN inhibition shows the potential for enhancing radiotherapy outcomes by targeting glycolysis, AKT, and ERK pathways in breast cancer. Identification and validation of soft tissue sarcoma-specific transcriptomic model for predicting radioresistance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1