Lunwen Wu, Tao Gu, Zhiyu Chen, Pan Zeng, Zhixue Liao
{"title":"Personalized day tour design for urban tourists with consideration to CO2 emissions","authors":"Lunwen Wu, Tao Gu, Zhiyu Chen, Pan Zeng, Zhixue Liao","doi":"10.1016/j.cjpre.2022.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>The growing awareness of climate change worldwide has led the urban tourism market to focus on balancing tourist tailored experiences and CO<sub>2</sub> emissions. Therefore, designing personalized tourist routes with environmental pollution consideration is preferable in this context. This study proposes an evolution algorithm based on reinforcement learning (FSRL-HA) to design a personalized day tour route that simultaneously considers the utility of tourists and the carbon emission. We conducted a case study in Chengdu, Sichuan, China, to evaluate this algorithm's performance. The results indicate that the proposed algorithm outperforms selected baseline methods. Furthermore, the approach can provide more diverse route choices for different tourists, and an experiment was conducted to explore how tourist preferences affect tourist utilities.</p></div>","PeriodicalId":45743,"journal":{"name":"Chinese Journal of Population Resources and Environment","volume":"20 3","pages":"Pages 237-244"},"PeriodicalIF":3.9000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2325426222000675/pdfft?md5=a95d44913e88429709d506f6572d74fd&pid=1-s2.0-S2325426222000675-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Population Resources and Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2325426222000675","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
The growing awareness of climate change worldwide has led the urban tourism market to focus on balancing tourist tailored experiences and CO2 emissions. Therefore, designing personalized tourist routes with environmental pollution consideration is preferable in this context. This study proposes an evolution algorithm based on reinforcement learning (FSRL-HA) to design a personalized day tour route that simultaneously considers the utility of tourists and the carbon emission. We conducted a case study in Chengdu, Sichuan, China, to evaluate this algorithm's performance. The results indicate that the proposed algorithm outperforms selected baseline methods. Furthermore, the approach can provide more diverse route choices for different tourists, and an experiment was conducted to explore how tourist preferences affect tourist utilities.
期刊介绍:
The Chinese Journal of Population, Resources and Environment (CJPRE) is a peer-reviewed international academic journal that publishes original research in the fields of economic, population, resource, and environment studies as they relate to sustainable development. The journal aims to address and evaluate theoretical frameworks, capability building initiatives, strategic goals, ethical values, empirical research, methodologies, and techniques in the field. CJPRE began publication in 1992 and is sponsored by the Chinese Society for Sustainable Development (CSSD), the Research Center for Sustainable Development of Shandong Province, the Administrative Center for China's Agenda 21 (ACCA21), and Shandong Normal University. The Chinese title of the journal was inscribed by the former Chinese leader, Mr. Deng Xiaoping. Initially focused on China's advances in sustainable development, CJPRE now also highlights global developments from both developed and developing countries.