A computer program for approximating a linear operator equation using a generalized Fourier series

M.G. Seibel, A.F. Leal, M.R. Barton, Theodore V. Hromadka II
{"title":"A computer program for approximating a linear operator equation using a generalized Fourier series","authors":"M.G. Seibel,&nbsp;A.F. Leal,&nbsp;M.R. Barton,&nbsp;Theodore V. Hromadka II","doi":"10.1016/0961-3552(91)90013-T","DOIUrl":null,"url":null,"abstract":"<div><p>Many important engineering problems fall into the category of being linear operators, with supporting conditions. In this paper, an inner-product and norm is used which enables the numerical modeler to approximate such by developing a generalized Fourier series. The resulting approximation is the “best” approximation in that a least-squares (L<sup>2</sup>) error is minimized simultaneously for fitting both the problem's boundary conditions and satisfying the linear operator relationship (the governing equations) over the problem's domain (both space and time). Because the numerical technique involves a well-defined inner-product, error evaluation is readily available using Bessel's inequality. Minimization of the approximation error is subsequently achieved with respect to a weighting of the inner components, and the addition of basis functions used in the approximation. A computer program source code is provided (see Appendix A) to implement the procedures.</p></div>","PeriodicalId":100044,"journal":{"name":"Advances in Engineering Software and Workstations","volume":"13 4","pages":"Pages 169-179"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0961-3552(91)90013-T","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software and Workstations","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/096135529190013T","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many important engineering problems fall into the category of being linear operators, with supporting conditions. In this paper, an inner-product and norm is used which enables the numerical modeler to approximate such by developing a generalized Fourier series. The resulting approximation is the “best” approximation in that a least-squares (L2) error is minimized simultaneously for fitting both the problem's boundary conditions and satisfying the linear operator relationship (the governing equations) over the problem's domain (both space and time). Because the numerical technique involves a well-defined inner-product, error evaluation is readily available using Bessel's inequality. Minimization of the approximation error is subsequently achieved with respect to a weighting of the inner components, and the addition of basis functions used in the approximation. A computer program source code is provided (see Appendix A) to implement the procedures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个用广义傅立叶级数逼近线性算子方程的计算机程序
许多重要的工程问题都属于具有支持条件的线性算子范畴。在本文中,使用内积和范数,使数值建模者能够通过发展广义傅里叶级数来近似。所得到的近似值是“最佳”近似值,因为最小二乘(L2)误差同时最小化,以拟合问题的边界条件并满足问题域(空间和时间)上的线性算子关系(控制方程)。由于数值技术涉及到一个定义良好的内积,误差评估很容易使用贝塞尔不等式。随后,通过对内部分量的加权和在近似中使用的基函数的添加,实现了近似误差的最小化。提供了一个计算机程序源代码(见附录A)来实现该过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial GEOMPACK — a software package for the generation of meshes using geometric algorithms Mesh generation with adaptive finite element analysis Feature-based design and finite element mesh generation for functional surfaces A generic Delaunay triangulation algorithm for finite element meshes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1