{"title":"A critical review of probabilistic live load models for buildings: Models, surveys, Eurocode statistics and reliability-based calibration","authors":"Luis G.L. Costa, André T. Beck","doi":"10.1016/j.strusafe.2023.102411","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The appropriate assignment of gravity live loads is of fundamental importance in establishing a design base for safe and economical structures. This paper presents a critical review of the probabilistic modelling<span> of live loads in buildings, providing a historical overview of the theoretical models found in the literature, as well as the load surveys that provided the empirical evidence for their development. As a general rule, these models divide the live load into sustained and extraordinary components, represented as a Poisson square wave and spike processes, respectively, with the differences lying in the underlying hypotheses and process parameters. A comparison of different models is presented, and it is shown that the model parameters currently in use in background documents on the reliability of the Eurocodes do not agree well with survey data, leading to an overestimation of extreme loads. While the Eurocodes lack clear specification regarding the </span></span>exceedance probability for design loads, this study demonstrates, using a model with modified parameters, that the office design load corresponds to an approximate 27% exceedance probability over 50 years for a reference area of 20 m</span><span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span><span>. The impact of employing this model on the reliability-based calibration of the Eurocode partial safety factors for loads is also examined, and it is found that the average reliability falls somewhat below the prescribed 50-year target reliability index of 3.8.</span></p></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"106 ","pages":"Article 102411"},"PeriodicalIF":5.7000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016747302300098X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The appropriate assignment of gravity live loads is of fundamental importance in establishing a design base for safe and economical structures. This paper presents a critical review of the probabilistic modelling of live loads in buildings, providing a historical overview of the theoretical models found in the literature, as well as the load surveys that provided the empirical evidence for their development. As a general rule, these models divide the live load into sustained and extraordinary components, represented as a Poisson square wave and spike processes, respectively, with the differences lying in the underlying hypotheses and process parameters. A comparison of different models is presented, and it is shown that the model parameters currently in use in background documents on the reliability of the Eurocodes do not agree well with survey data, leading to an overestimation of extreme loads. While the Eurocodes lack clear specification regarding the exceedance probability for design loads, this study demonstrates, using a model with modified parameters, that the office design load corresponds to an approximate 27% exceedance probability over 50 years for a reference area of 20 m. The impact of employing this model on the reliability-based calibration of the Eurocode partial safety factors for loads is also examined, and it is found that the average reliability falls somewhat below the prescribed 50-year target reliability index of 3.8.
期刊介绍:
Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment