Learning of specific process monitors in machine tool supervision

T.W Rauber, M.M Barata, A.S Steiger-Garção
{"title":"Learning of specific process monitors in machine tool supervision","authors":"T.W Rauber,&nbsp;M.M Barata,&nbsp;A.S Steiger-Garção","doi":"10.1016/0066-4138(94)90050-7","DOIUrl":null,"url":null,"abstract":"<div><p>This text describes our generic approaches to monitoring and prognostic, emphasizing the application of learning techniques, and focuses on model-free specific supervision entities that can be realized by a learning-from-examples method. All necessary tools for the generation of a supervised learning of a process situation classifier will be outlined. Statistical feature selection and inductive numerical learning constitute the basis for the proposed architecture. A particular supervised nonparametric learning method, developed in-house, the Q<sup>∗</sup> -algorithm will be presented. Practical experiments for the monitoring of a lathe are carried out.</p></div>","PeriodicalId":100097,"journal":{"name":"Annual Review in Automatic Programming","volume":"19 ","pages":"Pages 105-110"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0066-4138(94)90050-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review in Automatic Programming","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0066413894900507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This text describes our generic approaches to monitoring and prognostic, emphasizing the application of learning techniques, and focuses on model-free specific supervision entities that can be realized by a learning-from-examples method. All necessary tools for the generation of a supervised learning of a process situation classifier will be outlined. Statistical feature selection and inductive numerical learning constitute the basis for the proposed architecture. A particular supervised nonparametric learning method, developed in-house, the Q -algorithm will be presented. Practical experiments for the monitoring of a lathe are carried out.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习机床监督中具体的过程监控
本文描述了我们监测和预测的一般方法,强调了学习技术的应用,并侧重于无模型的具体监督实体,可以通过从例子中学习的方法来实现。所有必要的工具,以生成一个过程情境分类器的监督学习将被概述。统计特征选择和归纳数值学习构成了该架构的基础。一个特殊的监督非参数学习方法,开发内部,Q * -算法将提出。对车床进行了实际监测实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Author index Foreword Keyword index Author index Preface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1