Effect of divalent cations on the structure of dipalmitoylphosphatidylcholine and phosphatidylcholine/phosphatidylglycerol bilayers: an 2H-NMR study.

R Zidovetzki, A W Atiya, H De Boeck
{"title":"Effect of divalent cations on the structure of dipalmitoylphosphatidylcholine and phosphatidylcholine/phosphatidylglycerol bilayers: an 2H-NMR study.","authors":"R Zidovetzki,&nbsp;A W Atiya,&nbsp;H De Boeck","doi":"10.3109/09687688909025830","DOIUrl":null,"url":null,"abstract":"<p><p>The interactions of CaCl2 or MgCl2 with multilamellar phospholipid bilayers were studied by 2H-NMR. Two model membrane systems were used: (1) dipalmitoylphosphatidylcholine (DPPC) bilayers and (2) bilayers composed of a mixture of phosphatidylcholine and phosphatidylglycerol at a molar ratio of 5:1. Addition of 0.25 M CaCl2 to DPPC bilayers resulted in significant uniform increase of the order parameters of the lipid side chains; the effect of 0.25 M MgCl2 was insignificant. Both phosphatidylcholine and phosphatidylglycerol components of the mixed bilayers were affected by the presence of 0.25 M CaCl2 and, to a much smaller degree, by MgCl2. The addition of Ca2+ induced significantly larger increase of the order parameters of the phosphatidylcholine component. The results are consistent with the long-range effects of Ca2+ binding on the packing of the lipid membranes.</p>","PeriodicalId":18448,"journal":{"name":"Membrane biochemistry","volume":"8 3","pages":"177-86"},"PeriodicalIF":0.0000,"publicationDate":"1989-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/09687688909025830","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/09687688909025830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

The interactions of CaCl2 or MgCl2 with multilamellar phospholipid bilayers were studied by 2H-NMR. Two model membrane systems were used: (1) dipalmitoylphosphatidylcholine (DPPC) bilayers and (2) bilayers composed of a mixture of phosphatidylcholine and phosphatidylglycerol at a molar ratio of 5:1. Addition of 0.25 M CaCl2 to DPPC bilayers resulted in significant uniform increase of the order parameters of the lipid side chains; the effect of 0.25 M MgCl2 was insignificant. Both phosphatidylcholine and phosphatidylglycerol components of the mixed bilayers were affected by the presence of 0.25 M CaCl2 and, to a much smaller degree, by MgCl2. The addition of Ca2+ induced significantly larger increase of the order parameters of the phosphatidylcholine component. The results are consistent with the long-range effects of Ca2+ binding on the packing of the lipid membranes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二价阳离子对双棕榈酰磷脂酰胆碱和磷脂酰胆碱/磷脂酰甘油双分子层结构的影响:2H-NMR研究。
用2H-NMR研究了CaCl2或MgCl2与多层磷脂双分子层的相互作用。采用两种模型膜体系:(1)双棕榈酰磷脂酰胆碱(DPPC)双层膜;(2)磷脂酰胆碱与磷脂酰甘油按摩尔比为5:1的混合物双层膜。在DPPC双分子层中加入0.25 M CaCl2,脂质侧链的有序参数显著均匀增加;0.25 M MgCl2的影响不显著。混合双层的磷脂酰胆碱和磷脂酰甘油组分都受到0.25 M CaCl2的影响,而MgCl2的影响程度要小得多。Ca2+的加入使磷脂酰胆碱组分的序参量显著增加。结果与Ca2+结合对脂质膜包装的长期影响一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Properties of the ryanodine receptor present in the sarcoplasmic reticulum from lobster skeletal muscle. Uncoupling of occlusion from ATP hydrolysis activity in sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase. Use of the fluorescent probe Laurdan to investigate structural organization of the vesicular stomatitis virus (VSV) membrane. Inactivation of firefly luciferase and rat erythrocyte ATPase by ultrasound. Effect of free radical scavengers on changes in ion conductance during exposure to therapeutic ultrasound.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1