{"title":"Age-related effects of fatigue and recovery from fatigue in rat medial gastrocnemius muscle.","authors":"A de Haan, M A Lodder, A J Sargeant","doi":"10.1113/expphysiol.1989.sp003323","DOIUrl":null,"url":null,"abstract":"<p><p>Force-velocity, power-velocity and unloaded shortening data were obtained from in situ medial gastrocnemius muscle-tendon complexes (stimulated at 60 Hz) with intact circulation of mature male rats (approximately 125 days old). Measurements were carried out at the end of a long (15 s) contraction (fatigued muscles) or with a short (1 s) contraction either in the fresh state (fresh muscles) or in muscles which had recovered for 15 min after a long contraction. Compared to the fresh state fatigue reduced isometric force by 57%, maximal shortening velocity by approximately 40% and maximal power output by 81%. These reductions were similar to data previously obtained with younger rats (40 days old). However, the velocity data of the muscles which had recovered for 15 min after a long contraction showed a greater reduction in the mature rats. This difference between the two age groups together with a difference in the changes in the initial parts of the isometric force time curves suggest an age-dependent response of the fast-fatigable fibre population of these mixed muscles. In a separate series of experiments the underlying mechanism of the recovery from fatigue was studied in a group of young rats. Fatigue was induced with five long (15 s) contractions (each at 5 min intervals). The recovery of isometric force and power output was monitored with short contractions which indicated a plateau of recovery but the absolute values were still reduced after 60 min (85 and 71% of prefatigue values, respectively). Phosphocreatine concentration recovered rapidly, whereas the ATP concentration was still markedly reduced after 1 h of recovery. The time courses of recovery of inosine-5'-monophosphate (IMP) and lactate concentrations resembled those of force and power output. Thus it is possible that age-dependent differences in IMP and/or lactate production may play a role in fatigue and recovery from fatigue.</p>","PeriodicalId":77774,"journal":{"name":"Quarterly journal of experimental physiology (Cambridge, England)","volume":"74 5","pages":"715-26"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1113/expphysiol.1989.sp003323","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly journal of experimental physiology (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1113/expphysiol.1989.sp003323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Force-velocity, power-velocity and unloaded shortening data were obtained from in situ medial gastrocnemius muscle-tendon complexes (stimulated at 60 Hz) with intact circulation of mature male rats (approximately 125 days old). Measurements were carried out at the end of a long (15 s) contraction (fatigued muscles) or with a short (1 s) contraction either in the fresh state (fresh muscles) or in muscles which had recovered for 15 min after a long contraction. Compared to the fresh state fatigue reduced isometric force by 57%, maximal shortening velocity by approximately 40% and maximal power output by 81%. These reductions were similar to data previously obtained with younger rats (40 days old). However, the velocity data of the muscles which had recovered for 15 min after a long contraction showed a greater reduction in the mature rats. This difference between the two age groups together with a difference in the changes in the initial parts of the isometric force time curves suggest an age-dependent response of the fast-fatigable fibre population of these mixed muscles. In a separate series of experiments the underlying mechanism of the recovery from fatigue was studied in a group of young rats. Fatigue was induced with five long (15 s) contractions (each at 5 min intervals). The recovery of isometric force and power output was monitored with short contractions which indicated a plateau of recovery but the absolute values were still reduced after 60 min (85 and 71% of prefatigue values, respectively). Phosphocreatine concentration recovered rapidly, whereas the ATP concentration was still markedly reduced after 1 h of recovery. The time courses of recovery of inosine-5'-monophosphate (IMP) and lactate concentrations resembled those of force and power output. Thus it is possible that age-dependent differences in IMP and/or lactate production may play a role in fatigue and recovery from fatigue.