{"title":"Asymptotic optimality of speed-aware JSQ for heterogeneous service systems","authors":"Sanidhay Bhambay, Arpan Mukhopadhyay","doi":"10.1016/j.peva.2022.102320","DOIUrl":null,"url":null,"abstract":"<div><p>The Join-the-Shortest-Queue (JSQ) load-balancing scheme is known to minimise the average delay of jobs in homogeneous systems consisting of identical servers. However, it performs poorly in heterogeneous systems where servers have different processing rates. Finding a delay optimal scheme remains an open problem for heterogeneous systems. In this paper, we consider a speed-aware version of the JSQ scheme for heterogeneous systems and show that it achieves delay optimality in the fluid limit. One of the key issues in establishing this optimality result for heterogeneous systems is to show that the sequence of steady-state distributions indexed by the system size is tight in an appropriately defined space. The usual technique for showing tightness by coupling with a suitably defined dominant system does not work for heterogeneous systems. To prove tightness, we devise a new technique that uses the drift of exponential Lyapunov functions. Using the non-negativity of the drift, we show that the stationary queue length distribution has an exponentially decaying tail — a fact we use to prove tightness. Another technical difficulty arises due to the complexity of the underlying state-space and the separation of two time-scales in the fluid limit. Due to these factors, the fluid-limit turns out to be a function of the invariant distribution of a multi-dimensional Markov chain which is hard to characterise. By using some properties of this invariant distribution and using the monotonicity of the system, we show that the fluid limit is has a unique and globally attractive fixed point.</p></div>","PeriodicalId":19964,"journal":{"name":"Performance Evaluation","volume":"157 ","pages":"Article 102320"},"PeriodicalIF":1.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166531622000281/pdfft?md5=16a46606029e0e71f6846c950586957f&pid=1-s2.0-S0166531622000281-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166531622000281","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The Join-the-Shortest-Queue (JSQ) load-balancing scheme is known to minimise the average delay of jobs in homogeneous systems consisting of identical servers. However, it performs poorly in heterogeneous systems where servers have different processing rates. Finding a delay optimal scheme remains an open problem for heterogeneous systems. In this paper, we consider a speed-aware version of the JSQ scheme for heterogeneous systems and show that it achieves delay optimality in the fluid limit. One of the key issues in establishing this optimality result for heterogeneous systems is to show that the sequence of steady-state distributions indexed by the system size is tight in an appropriately defined space. The usual technique for showing tightness by coupling with a suitably defined dominant system does not work for heterogeneous systems. To prove tightness, we devise a new technique that uses the drift of exponential Lyapunov functions. Using the non-negativity of the drift, we show that the stationary queue length distribution has an exponentially decaying tail — a fact we use to prove tightness. Another technical difficulty arises due to the complexity of the underlying state-space and the separation of two time-scales in the fluid limit. Due to these factors, the fluid-limit turns out to be a function of the invariant distribution of a multi-dimensional Markov chain which is hard to characterise. By using some properties of this invariant distribution and using the monotonicity of the system, we show that the fluid limit is has a unique and globally attractive fixed point.
期刊介绍:
Performance Evaluation functions as a leading journal in the area of modeling, measurement, and evaluation of performance aspects of computing and communication systems. As such, it aims to present a balanced and complete view of the entire Performance Evaluation profession. Hence, the journal is interested in papers that focus on one or more of the following dimensions:
-Define new performance evaluation tools, including measurement and monitoring tools as well as modeling and analytic techniques
-Provide new insights into the performance of computing and communication systems
-Introduce new application areas where performance evaluation tools can play an important role and creative new uses for performance evaluation tools.
More specifically, common application areas of interest include the performance of:
-Resource allocation and control methods and algorithms (e.g. routing and flow control in networks, bandwidth allocation, processor scheduling, memory management)
-System architecture, design and implementation
-Cognitive radio
-VANETs
-Social networks and media
-Energy efficient ICT
-Energy harvesting
-Data centers
-Data centric networks
-System reliability
-System tuning and capacity planning
-Wireless and sensor networks
-Autonomic and self-organizing systems
-Embedded systems
-Network science