The contracting muscle: a challenge for freeze-substitution and low temperature embedding.

Scanning microscopy. Supplement Pub Date : 1989-01-01
L Edelmann
{"title":"The contracting muscle: a challenge for freeze-substitution and low temperature embedding.","authors":"L Edelmann","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Frog sartorius and semitendinosus muscles are quick-frozen either in the resting state or during contraction by means of a LN2 cooled falling copper block. The frozen specimens are freeze-substituted (acetone + OsO4 + uranyl acetate) in a REICHERT JUNG CS auto and either embedded in Spurr's resin and polymerised at a high temperature (60 degrees C) or embedded and polymerised in the Lowicryls K4M, K11M or HM23 at low temperatures (below -30 degrees C). Excellent morphological results are obtained when freeze-substitution, embedding and polymerisation are all carried out below -50 degrees C. Muscles in which a major portion of cellular K+ ions has been replaced by electron dense Cs+ or Tl+ ions are also cryofixed at rest or during contraction, freeze-substituted in pure acetone for 1 week at -80 degrees C and polymerised in K11M at -60 degrees C. A characteristic uneven distribution of the electron dense ions--known from earlier published control experiments--can be observed in sections of resting muscles. Electrically stimulated muscles show ion redistribution. It is concluded that freeze-substitution and low temperature embedding of quick-frozen contracting muscle may be used to investigate changes of ultrastructure, redistribution of cellular water and intracellular movements of mobile ions during muscle contraction.</p>","PeriodicalId":77379,"journal":{"name":"Scanning microscopy. Supplement","volume":"3 ","pages":"241-51; discussion 251-2"},"PeriodicalIF":0.0000,"publicationDate":"1989-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scanning microscopy. Supplement","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Frog sartorius and semitendinosus muscles are quick-frozen either in the resting state or during contraction by means of a LN2 cooled falling copper block. The frozen specimens are freeze-substituted (acetone + OsO4 + uranyl acetate) in a REICHERT JUNG CS auto and either embedded in Spurr's resin and polymerised at a high temperature (60 degrees C) or embedded and polymerised in the Lowicryls K4M, K11M or HM23 at low temperatures (below -30 degrees C). Excellent morphological results are obtained when freeze-substitution, embedding and polymerisation are all carried out below -50 degrees C. Muscles in which a major portion of cellular K+ ions has been replaced by electron dense Cs+ or Tl+ ions are also cryofixed at rest or during contraction, freeze-substituted in pure acetone for 1 week at -80 degrees C and polymerised in K11M at -60 degrees C. A characteristic uneven distribution of the electron dense ions--known from earlier published control experiments--can be observed in sections of resting muscles. Electrically stimulated muscles show ion redistribution. It is concluded that freeze-substitution and low temperature embedding of quick-frozen contracting muscle may be used to investigate changes of ultrastructure, redistribution of cellular water and intracellular movements of mobile ions during muscle contraction.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
收缩肌:冷冻替代和低温包埋的挑战。
蛙缝匠肌和半腱肌在静息状态或收缩过程中通过LN2冷却下降的铜块进行速冻。冷冻标本在REICHERT JUNG CS自动容器中冷冻取代(丙酮+ OsO4 +醋酸铀酰),然后嵌入到Spurr树脂中并在高温(60摄氏度)下聚合,或者在低温(低于-30摄氏度)下嵌入并在低基K4M, K11M或HM23中聚合。嵌入和聚合都低于-50度C进行肌肉细胞K +离子的主要部分,已经取代了电子密度或Tl C + +离子也cryofixed静止或收缩期间,在纯丙酮freeze-substituted 1周在-80摄氏度和聚合在K11M -60度C电子致密的不均匀分布特征离子——从早些时候出版控制实验中可以观察到的部分肌肉。电刺激肌肉显示离子再分布。冻融替代和低温包埋可用于研究肌肉收缩过程中超微结构的变化、细胞内水分的再分配和运动离子的胞内运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nucleic acid detection by in situ molecular immunogold labeling procedures. Hydration-scanning tunneling microscopy as a reliable method for imaging biological specimens and hydrophilic insulators. Imaging molecular structure of channels and receptors with an atomic force microscope. Atomic force microscopy of DNA, nucleoproteins and cellular complexes: the use of functionalized substrates. Microscopic analysis of DNA and DNA-protein assembly by transmission electron microscopy, scanning tunneling microscopy and scanning force microscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1