Optimal power allocation in nonlinear MDM-WDM systems using Gaussian noise model

IF 2.3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Optoelectronics Pub Date : 2022-01-20 DOI:10.1049/ote2.12064
Mohammad Ali Amirabadi, Mohammad Hossein Kahaei, S. Alireza Nezamalhosseini, Lawrence R. Chen
{"title":"Optimal power allocation in nonlinear MDM-WDM systems using Gaussian noise model","authors":"Mohammad Ali Amirabadi,&nbsp;Mohammad Hossein Kahaei,&nbsp;S. Alireza Nezamalhosseini,&nbsp;Lawrence R. Chen","doi":"10.1049/ote2.12064","DOIUrl":null,"url":null,"abstract":"<p>Mode-division multiplexing (MDM) using few-mode fibre (FMF) has received increasing attention to address the exponential growth of data traffic in long-haul optical communication systems. Also, combining the MDM with wavelength-division multiplexing (WDM) is a promising approach for dramatically growing the transmission capacity in such systems. However, a major barrier in this regard is the FMF nonlinear effects, which can significantly reduce the link performance. In this paper, in order to alleviate the FMF nonlinear effects, we focus on power allocation in FMF links by optimizing the input power of each optical WDM channel of each spatial mode, which leads to maximizing the total capacity transmission and also the minimum signal to noise ratio (SNR) margin. The FMF nonlinearity has been already modelled as the Gaussian noise (GN) for which no closed-form formulation has been developed so far. Here, we derive a closed-form GN model for this problem and verify it by comparing with the integral-form GN model and split-step Fourier method. In this approach, an optimal power is independently determined for each channel of each mode by optimizing a capacity maximization and a minimum SNR margin maximization problem in convex forms. The performance of different links including the single mode fibre-WDM, MDM-single channel, and MDM-WDM are compared using computer simulations. These systems are comprehensively investigated in equal/non-equal required SNR as well as flat/non-flat amplifier gain scenarios. It is shown that optimized power allocation to each channel of each mode has a significant enhancement in the minimum SNR margin maximization scheme compared to the best equal power allocation. Furthermore, this improvement is much more in non-equal required SNR and the non-flat amplifier gain scenarios, showing the efficiency of the established approach in practical communication links.</p>","PeriodicalId":13408,"journal":{"name":"Iet Optoelectronics","volume":"16 3","pages":"133-148"},"PeriodicalIF":2.3000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ote2.12064","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Optoelectronics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ote2.12064","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Mode-division multiplexing (MDM) using few-mode fibre (FMF) has received increasing attention to address the exponential growth of data traffic in long-haul optical communication systems. Also, combining the MDM with wavelength-division multiplexing (WDM) is a promising approach for dramatically growing the transmission capacity in such systems. However, a major barrier in this regard is the FMF nonlinear effects, which can significantly reduce the link performance. In this paper, in order to alleviate the FMF nonlinear effects, we focus on power allocation in FMF links by optimizing the input power of each optical WDM channel of each spatial mode, which leads to maximizing the total capacity transmission and also the minimum signal to noise ratio (SNR) margin. The FMF nonlinearity has been already modelled as the Gaussian noise (GN) for which no closed-form formulation has been developed so far. Here, we derive a closed-form GN model for this problem and verify it by comparing with the integral-form GN model and split-step Fourier method. In this approach, an optimal power is independently determined for each channel of each mode by optimizing a capacity maximization and a minimum SNR margin maximization problem in convex forms. The performance of different links including the single mode fibre-WDM, MDM-single channel, and MDM-WDM are compared using computer simulations. These systems are comprehensively investigated in equal/non-equal required SNR as well as flat/non-flat amplifier gain scenarios. It is shown that optimized power allocation to each channel of each mode has a significant enhancement in the minimum SNR margin maximization scheme compared to the best equal power allocation. Furthermore, this improvement is much more in non-equal required SNR and the non-flat amplifier gain scenarios, showing the efficiency of the established approach in practical communication links.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高斯噪声模型的非线性MDM-WDM系统最优功率分配
利用少模光纤的模分复用(MDM)技术解决长途光通信系统中数据流量的指数级增长日益受到人们的关注。此外,将MDM与波分复用(wavelength-division multiplexing, WDM)相结合是一种很有前途的方法,可以显著提高此类系统中的传输容量。然而,在这方面的一个主要障碍是FMF非线性效应,它会显著降低链路的性能。为了缓解FMF非线性效应,本文重点研究了FMF链路中的功率分配问题,通过优化每个空间模式下WDM光信道的输入功率,使总传输容量最大化,同时使信噪比(SNR)裕度最小。FMF非线性已被建模为高斯噪声(GN),迄今为止还没有开发出封闭形式的公式。本文推导了该问题的闭型GN模型,并与积分型GN模型和分步傅里叶方法进行了比较验证。该方法通过优化容量最大化问题和最小信噪比余量最大化问题,独立确定每种模式下每个通道的最优功率。通过计算机仿真比较了单模光纤波分复用、单信道光纤波分复用和单信道光纤波分复用的性能。这些系统在等/不等所需信噪比以及平坦/非平坦放大器增益情况下进行了全面研究。结果表明,在最小信噪比裕度最大化方案中,各信道的优化功率分配比最佳等功率分配有显著的增强。此外,在要求信噪比不相等和放大器增益不平坦的情况下,这种改进要大得多,这表明所建立的方法在实际通信链路中的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Optoelectronics
Iet Optoelectronics 工程技术-电信学
CiteScore
4.50
自引率
0.00%
发文量
26
审稿时长
6 months
期刊介绍: IET Optoelectronics publishes state of the art research papers in the field of optoelectronics and photonics. The topics that are covered by the journal include optical and optoelectronic materials, nanophotonics, metamaterials and photonic crystals, light sources (e.g. LEDs, lasers and devices for lighting), optical modulation and multiplexing, optical fibres, cables and connectors, optical amplifiers, photodetectors and optical receivers, photonic integrated circuits, photonic systems, optical signal processing and holography and displays. Most of the papers published describe original research from universities and industrial and government laboratories. However correspondence suggesting review papers and tutorials is welcomed, as are suggestions for special issues. IET Optoelectronics covers but is not limited to the following topics: Optical and optoelectronic materials Light sources, including LEDs, lasers and devices for lighting Optical modulation and multiplexing Optical fibres, cables and connectors Optical amplifiers Photodetectors and optical receivers Photonic integrated circuits Nanophotonics and photonic crystals Optical signal processing Holography Displays
期刊最新文献
Cover Image ANFIS-based controlled spherical rotator with quadrant photodiode to improve position detection accuracy An unsupervised coherent receiver digital signal processing algorithm based on spectral clustering with no data preamble Continuous wave operation of broad area and ridge waveguide laser diodes at 626 nm Experimental analysis of reducing outage probability using deep interleaving for long-distance free space optical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1