Daniel Henrion, Philippe Bonnin, Emilie Vessieres, Anne-Laure Guihlot, Marc Iglarz, Bernard I Lévy
{"title":"Endothelin Receptor Blockade Improves Cerebral Blood Flow-Mediated Dilation in a Mouse Model of Alzheimer's Disease.","authors":"Daniel Henrion, Philippe Bonnin, Emilie Vessieres, Anne-Laure Guihlot, Marc Iglarz, Bernard I Lévy","doi":"10.1159/000534614","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cerebral blood flow (CBF) is reduced in patients with Alzheimer's disease (AD). Flow-mediated dilation (FMD), which plays a key role in the regulation of blood flow, is attenuated by endothelin-1. We hypothesized that endothelin receptor blockade may improve CBF in AD.</p><p><strong>Methods: </strong>We investigated cerebrovascular reactivity in a mouse model of AD (APP-PS1; 5-6-month-old male subjects). We assessed the in vivo response to normoxic hypercapnia and in vitro FMD in isolated cerebral and mesenteric resistance arteries before and after endothelin receptor blockade (bosentan).</p><p><strong>Results: </strong>Normoxic hypercapnia increased basilar trunk blood flow velocity (+12.3 ± 2.4%; p = 0.006, n = 6) in wild-type (WT) mice but reduced blood flow in APP-PS1 mice (-11.4 ± 1.2%; p < 0.0001, n = 8). Bosentan (50 mg/kg, acute intraperitoneal injection) restored cerebrovascular reactivity in APP-PS1 mice (+10.2 ± 2.2%; p < 0.0001, n = 8) but had no effect in WT. FMD was reduced in the posterior cerebral artery of APP-PS1 compared to WT and was normalized by bosentan (1 μmol/L, 30 min, or 50 mg/kg/day for 28 days). FMD was similar in the mesenteric artery of APPS-PS1 and WT.</p><p><strong>Conclusion: </strong>APP-PS1 mice exhibited cerebrovascular endothelial dysfunction. Acute and chronic blockade of endothelin receptors restored endothelial vasomotor function, suggesting a promising therapeutic approach to restoring cerebral vasoreactivity in AD.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":" ","pages":"273-282"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000534614","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Cerebral blood flow (CBF) is reduced in patients with Alzheimer's disease (AD). Flow-mediated dilation (FMD), which plays a key role in the regulation of blood flow, is attenuated by endothelin-1. We hypothesized that endothelin receptor blockade may improve CBF in AD.
Methods: We investigated cerebrovascular reactivity in a mouse model of AD (APP-PS1; 5-6-month-old male subjects). We assessed the in vivo response to normoxic hypercapnia and in vitro FMD in isolated cerebral and mesenteric resistance arteries before and after endothelin receptor blockade (bosentan).
Results: Normoxic hypercapnia increased basilar trunk blood flow velocity (+12.3 ± 2.4%; p = 0.006, n = 6) in wild-type (WT) mice but reduced blood flow in APP-PS1 mice (-11.4 ± 1.2%; p < 0.0001, n = 8). Bosentan (50 mg/kg, acute intraperitoneal injection) restored cerebrovascular reactivity in APP-PS1 mice (+10.2 ± 2.2%; p < 0.0001, n = 8) but had no effect in WT. FMD was reduced in the posterior cerebral artery of APP-PS1 compared to WT and was normalized by bosentan (1 μmol/L, 30 min, or 50 mg/kg/day for 28 days). FMD was similar in the mesenteric artery of APPS-PS1 and WT.
Conclusion: APP-PS1 mice exhibited cerebrovascular endothelial dysfunction. Acute and chronic blockade of endothelin receptors restored endothelial vasomotor function, suggesting a promising therapeutic approach to restoring cerebral vasoreactivity in AD.
期刊介绍:
The ''Journal of Vascular Research'' publishes original articles and reviews of scientific excellence in vascular and microvascular biology, physiology and pathophysiology. The scope of the journal covers a broad spectrum of vascular and lymphatic research, including vascular structure, vascular function, haemodynamics, mechanics, cell signalling, intercellular communication, growth and differentiation. JVR''s ''Vascular Update'' series regularly presents state-of-the-art reviews on hot topics in vascular biology. Manuscript processing times are, consistent with stringent review, kept as short as possible due to electronic submission. All articles are published online first, ensuring rapid publication. The ''Journal of Vascular Research'' is the official journal of the European Society for Microcirculation. A biennial prize is awarded to the authors of the best paper published in the journal over the previous two years, thus encouraging young scientists working in the exciting field of vascular biology to publish their findings.