Karen Lorena Martinez-Mendoza, Juan Guerrero-Perez, Juan Barraza-Burgos, Carmen Rosa Forero, Orla Williams, Edward Lester, Nicolas Gil
{"title":"Thermochemical behavior of agricultural and industrial sugarcane residues for bioenergy applications.","authors":"Karen Lorena Martinez-Mendoza, Juan Guerrero-Perez, Juan Barraza-Burgos, Carmen Rosa Forero, Orla Williams, Edward Lester, Nicolas Gil","doi":"10.1080/21655979.2023.2283264","DOIUrl":null,"url":null,"abstract":"<p><p>The Colombian sugarcane industry yields significant residues, categorized as agricultural and industrial. While bagasse, a widely studied industrial residue, is employed for energy recovery through combustion, agricultural residues are often left in fields. This study assesses the combustion behavior of these residues in typical collection scenarios. Additionally, it encompasses the characterization of residues from genetically modified sugarcane varieties in Colombia, potentially exhibiting distinct properties not previously documented. Non-isothermal thermogravimetrical analysis was employed to study the thermal behavior of sugarcane industrial residues (bagasse and pith) alongside agricultural residues from two different sugarcane varieties. This facilitated the determination of combustion reactivity through characteristic combustion process temperatures and technical parameters like ignition and combustion indexes. Proximate, elemental, and biochemical analyses revealed slight compositional differences. Agricultural residues demonstrated higher ash content (up to 34%) due to foreign matter adhering during harvesting, as well as soil and mud attachment during collection. Lignin content also varied, being lower for bagasse and pith, attributed to the juice extraction and milling processes that remove soluble lignin. Thermogravimetric analysis unveiled a two-stage burning process in all samples: devolatilization and char formation (~170°C), followed by char combustion (~310°C). Characteristic temperatures displayed subtle differences, with agricultural residues exhibiting lower temperatures and decomposition rates, resulting in reduced ignition and combustion indexes. This indicates heightened combustion reactivity in industrial residues, attributed to their elevated oxygen percentage, leading to more reactive functional groups and greater combustion stability compared to agricultural residues. This information is pertinent for optimizing sugarcane residues utilization in energy applications.</p>","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"14 1","pages":"2283264"},"PeriodicalIF":4.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761060/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineered","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21655979.2023.2283264","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Colombian sugarcane industry yields significant residues, categorized as agricultural and industrial. While bagasse, a widely studied industrial residue, is employed for energy recovery through combustion, agricultural residues are often left in fields. This study assesses the combustion behavior of these residues in typical collection scenarios. Additionally, it encompasses the characterization of residues from genetically modified sugarcane varieties in Colombia, potentially exhibiting distinct properties not previously documented. Non-isothermal thermogravimetrical analysis was employed to study the thermal behavior of sugarcane industrial residues (bagasse and pith) alongside agricultural residues from two different sugarcane varieties. This facilitated the determination of combustion reactivity through characteristic combustion process temperatures and technical parameters like ignition and combustion indexes. Proximate, elemental, and biochemical analyses revealed slight compositional differences. Agricultural residues demonstrated higher ash content (up to 34%) due to foreign matter adhering during harvesting, as well as soil and mud attachment during collection. Lignin content also varied, being lower for bagasse and pith, attributed to the juice extraction and milling processes that remove soluble lignin. Thermogravimetric analysis unveiled a two-stage burning process in all samples: devolatilization and char formation (~170°C), followed by char combustion (~310°C). Characteristic temperatures displayed subtle differences, with agricultural residues exhibiting lower temperatures and decomposition rates, resulting in reduced ignition and combustion indexes. This indicates heightened combustion reactivity in industrial residues, attributed to their elevated oxygen percentage, leading to more reactive functional groups and greater combustion stability compared to agricultural residues. This information is pertinent for optimizing sugarcane residues utilization in energy applications.
期刊介绍:
Bioengineered provides a platform for publishing high quality research on any aspect of genetic engineering which involves the generation of recombinant strains (both prokaryote and eukaryote) for beneficial applications in food, medicine, industry, environment and bio-defense.