Endothelial progenitor cells in pregnancy-related diseases.

IF 6.7 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Clinical science Pub Date : 2023-11-29 DOI:10.1042/CS20230853
Yangyang Chen, Gui Wan, Zeyun Li, Xiaoxia Liu, Yin Zhao, Li Zou, Weifang Liu
{"title":"Endothelial progenitor cells in pregnancy-related diseases.","authors":"Yangyang Chen, Gui Wan, Zeyun Li, Xiaoxia Liu, Yin Zhao, Li Zou, Weifang Liu","doi":"10.1042/CS20230853","DOIUrl":null,"url":null,"abstract":"<p><p>Placental neovascularization plays a crucial role in fetomaternal circulation throughout pregnancy and is dysregulated in several pregnancy-related diseases, including preeclampsia, gestational diabetes mellitus, and fetal growth restriction. Endothelial progenitor cells (EPCs) are a heterogeneous population of cells that differentiate into mature endothelial cells, which influence vascular homeostasis, neovascularization, and endothelial repair. Since their discovery in 1997 by Asahara et al., the role of EPCs in vascular biology has garnered a lot of interest. However, although pregnancy-related conditions are associated with changes in the number and function of EPCs, the reported findings are conflicting. This review discusses the discovery, isolation, and classification of EPCs and highlights discrepancies between current studies. Overviews of how various diseases affect the numbers and functions of EPCs, the role of EPCs as biomarkers of pregnancy disorders, and the potential therapeutic applications involving EPCs are also provided.</p>","PeriodicalId":10475,"journal":{"name":"Clinical science","volume":"137 22","pages":"1699-1719"},"PeriodicalIF":6.7000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665129/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20230853","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Placental neovascularization plays a crucial role in fetomaternal circulation throughout pregnancy and is dysregulated in several pregnancy-related diseases, including preeclampsia, gestational diabetes mellitus, and fetal growth restriction. Endothelial progenitor cells (EPCs) are a heterogeneous population of cells that differentiate into mature endothelial cells, which influence vascular homeostasis, neovascularization, and endothelial repair. Since their discovery in 1997 by Asahara et al., the role of EPCs in vascular biology has garnered a lot of interest. However, although pregnancy-related conditions are associated with changes in the number and function of EPCs, the reported findings are conflicting. This review discusses the discovery, isolation, and classification of EPCs and highlights discrepancies between current studies. Overviews of how various diseases affect the numbers and functions of EPCs, the role of EPCs as biomarkers of pregnancy disorders, and the potential therapeutic applications involving EPCs are also provided.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内皮祖细胞在妊娠相关疾病中的作用
胎盘新生血管在整个妊娠期间的母婴循环中起着至关重要的作用,在一些妊娠相关疾病中,包括先兆子痫、妊娠糖尿病和胎儿生长受限。内皮祖细胞(EPCs)是一种分化为成熟内皮细胞的异质细胞群,影响血管稳态、新生血管和内皮修复。自1997年Asahara等人发现EPCs以来,EPCs在血管生物学中的作用引起了人们的极大兴趣。然而,尽管妊娠相关疾病与EPCs数量和功能的变化有关,但报道的结果是相互矛盾的。这篇综述讨论了EPCs的发现、分离和分类,并强调了当前研究之间的差异。综述了各种疾病如何影响EPCs的数量和功能,EPCs作为妊娠疾病生物标志物的作用,以及涉及EPCs的潜在治疗应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical science
Clinical science 医学-医学:研究与实验
CiteScore
11.40
自引率
0.00%
发文量
189
审稿时长
4-8 weeks
期刊介绍: Translating molecular bioscience and experimental research into medical insights, Clinical Science offers multi-disciplinary coverage and clinical perspectives to advance human health. Its international Editorial Board is charged with selecting peer-reviewed original papers of the highest scientific merit covering the broad spectrum of biomedical specialities including, although not exclusively: Cardiovascular system Cerebrovascular system Gastrointestinal tract and liver Genomic medicine Infection and immunity Inflammation Oncology Metabolism Endocrinology and nutrition Nephrology Circulation Respiratory system Vascular biology Molecular pathology.
期刊最新文献
Enhanced vasoconstriction in sickle cell disease is dependent on ETA receptor activation. Expression of Concern: Short-term early exposure to thirdhand cigarette smoke increases lung cancer incidence in mice. New discoveries in bile acids, gut microbiota and host interactions in health and diseases. CXCL5 inhibition ameliorates acute kidney injury and prevents the progression from acute kidney injury to chronic kidney disease. Placental small extracellular vesicles from normal pregnancy and gestational diabetes increase insulin gene transcription and content in β cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1