Epigenetic age acceleration, neonatal morbidities, and neurobehavioral profiles in infants born very preterm.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Epigenetics Pub Date : 2023-12-01 Epub Date: 2023-11-20 DOI:10.1080/15592294.2023.2280738
Uriel Paniagua, Barry M Lester, Carmen J Marsit, Marie Camerota, Brian S Carter, Jennifer F Check, Jennifer Helderman, Julie A Hofheimer, Elisabeth C McGowan, Charles R Neal, Steven L Pastyrnak, Lynne M Smith, Sheri A DellaGrotta, Lynne M Dansereau, T Michael O'Shea, Todd M Everson
{"title":"Epigenetic age acceleration, neonatal morbidities, and neurobehavioral profiles in infants born very preterm.","authors":"Uriel Paniagua, Barry M Lester, Carmen J Marsit, Marie Camerota, Brian S Carter, Jennifer F Check, Jennifer Helderman, Julie A Hofheimer, Elisabeth C McGowan, Charles R Neal, Steven L Pastyrnak, Lynne M Smith, Sheri A DellaGrotta, Lynne M Dansereau, T Michael O'Shea, Todd M Everson","doi":"10.1080/15592294.2023.2280738","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic age acceleration is a risk factor for chronic diseases of ageing and may reflect aspects of biological ageing. However, few studies have examined epigenetic ageing during the early neonatal period in preterm infants, who are at heightened risk of developmental problems. We examined relationships between neonatal age acceleration, neonatal morbidities, and neurobehavioral domains among very preterm (<30 weeks gestation) infants to characterize whether infants with early morbidities or different neurobehavioral characteristics had accelerated or decelerated epigenetic ageing. This study uses data from the Neonatal Neurobehavior and Outcomes in Very Preterm Infants (NOVI) study, restricted to infants with data on variables assessed (<i>n</i> = 519). We used generalized estimating equations to test for differences in age acceleration associated with severe neonatal medical morbidities and neurobehavioral characteristics. We found that infants with neonatal morbidities, in particular, bronchopulmonary dysplasia (BPD), had accelerated epigenetic age - and some evidence that infants with hypertonicity and asymmetric reflexes had increased and decreased age acceleration, respectively. Adjustment for gestational age attenuated some associations, suggesting that the relationships observed may be driven by the duration of gestation. Our most robust finding shows that very preterm infants with neonatal morbidities (BPD in particular) exhibit age acceleration, but most neonatal neurobehavioral characteristics and morbidities are not associated with early life age acceleration. Lower gestational age at birth may be an upstream factor driving these associations.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"18 1","pages":"2280738"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732637/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2023.2280738","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Epigenetic age acceleration is a risk factor for chronic diseases of ageing and may reflect aspects of biological ageing. However, few studies have examined epigenetic ageing during the early neonatal period in preterm infants, who are at heightened risk of developmental problems. We examined relationships between neonatal age acceleration, neonatal morbidities, and neurobehavioral domains among very preterm (<30 weeks gestation) infants to characterize whether infants with early morbidities or different neurobehavioral characteristics had accelerated or decelerated epigenetic ageing. This study uses data from the Neonatal Neurobehavior and Outcomes in Very Preterm Infants (NOVI) study, restricted to infants with data on variables assessed (n = 519). We used generalized estimating equations to test for differences in age acceleration associated with severe neonatal medical morbidities and neurobehavioral characteristics. We found that infants with neonatal morbidities, in particular, bronchopulmonary dysplasia (BPD), had accelerated epigenetic age - and some evidence that infants with hypertonicity and asymmetric reflexes had increased and decreased age acceleration, respectively. Adjustment for gestational age attenuated some associations, suggesting that the relationships observed may be driven by the duration of gestation. Our most robust finding shows that very preterm infants with neonatal morbidities (BPD in particular) exhibit age acceleration, but most neonatal neurobehavioral characteristics and morbidities are not associated with early life age acceleration. Lower gestational age at birth may be an upstream factor driving these associations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
早产儿的表观遗传年龄加速、新生儿发病率和神经行为特征。
表观遗传年龄加速是慢性衰老疾病的一个危险因素,可能反映了生物衰老的各个方面。然而,很少有研究检查早产儿在早期新生儿期的表观遗传老化,早产儿有较高的发育问题风险。我们研究了早产儿中新生儿年龄加速、新生儿发病率和神经行为领域之间的关系(n = 519)。我们使用广义估计方程来检验与严重新生儿医学发病率和神经行为特征相关的年龄加速差异。我们发现,患有新生儿疾病的婴儿,特别是支气管肺发育不良(BPD)的婴儿,其表观遗传年龄加速,一些证据表明,高渗性和不对称反射的婴儿年龄加速分别增加和减少。调整胎龄降低了一些关联,表明观察到的关系可能是由妊娠持续时间驱动的。我们最有力的发现表明,具有新生儿疾病(特别是BPD)的早产儿表现出年龄加速,但大多数新生儿神经行为特征和疾病与早期生命年龄加速无关。较低的出生胎龄可能是导致这些关联的上游因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Epigenetics
Epigenetics 生物-生化与分子生物学
CiteScore
6.80
自引率
2.70%
发文量
82
审稿时长
3-8 weeks
期刊介绍: Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed. Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to): DNA methylation Nucleosome positioning and modification Gene silencing Imprinting Nuclear reprogramming Chromatin remodeling Non-coding RNA Non-histone chromosomal elements Dosage compensation Nuclear organization Epigenetic therapy and diagnostics Nutrition and environmental epigenetics Cancer epigenetics Neuroepigenetics
期刊最新文献
WGBS of embryonic gonads revealed that long non-coding RNAs in the MHM region might be involved in cell autonomous sex identity and female gonadal development in chickens. Imprinted gene alterations in the kidneys of growth restricted offspring may be mediated by a long non-coding RNA. N6-methyladenosine methylation analysis of long noncoding RNAs and mRNAs in 5-FU-resistant colon cancer cells. History of exposure to copper influences transgenerational gene expression responses in Daphnia magna. Plasma methylated GNB4 and Riplet as a novel dual-marker panel for the detection of hepatocellular carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1