Alzheimer's genes in microglia: a risk worth investigating.

IF 14.9 1区 医学 Q1 NEUROSCIENCES Molecular Neurodegeneration Pub Date : 2023-11-20 DOI:10.1186/s13024-023-00679-4
Ari Sudwarts, Gopal Thinakaran
{"title":"Alzheimer's genes in microglia: a risk worth investigating.","authors":"Ari Sudwarts, Gopal Thinakaran","doi":"10.1186/s13024-023-00679-4","DOIUrl":null,"url":null,"abstract":"<p><p>Despite expressing many key risk genes, the role of microglia in late-onset Alzheimer's disease pathophysiology is somewhat ambiguous, with various phenotypes reported to be either harmful or protective. Herein, we review some key findings from clinical and animal model investigations, discussing the role of microglial genetics in mediating perturbations from homeostasis. We note that impairment to protective phenotypes may include prolonged or insufficient microglial activation, resulting in dysregulated metabolomic (notably lipid-related) processes, compounded by age-related inflexibility in dynamic responses. Insufficiencies of mouse genetics and aggressive transgenic modelling imply severe limitations in applying current methodologies for aetiological investigations. Despite the shortcomings, widely used amyloidosis and tauopathy models of the disease have proven invaluable in dissecting microglial functional responses to AD pathophysiology. Some recent advances have brought modelling tools closer to human genetics, increasing the validity of both aetiological and translational endeavours.</p>","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"18 1","pages":"90"},"PeriodicalIF":14.9000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662636/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13024-023-00679-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Despite expressing many key risk genes, the role of microglia in late-onset Alzheimer's disease pathophysiology is somewhat ambiguous, with various phenotypes reported to be either harmful or protective. Herein, we review some key findings from clinical and animal model investigations, discussing the role of microglial genetics in mediating perturbations from homeostasis. We note that impairment to protective phenotypes may include prolonged or insufficient microglial activation, resulting in dysregulated metabolomic (notably lipid-related) processes, compounded by age-related inflexibility in dynamic responses. Insufficiencies of mouse genetics and aggressive transgenic modelling imply severe limitations in applying current methodologies for aetiological investigations. Despite the shortcomings, widely used amyloidosis and tauopathy models of the disease have proven invaluable in dissecting microglial functional responses to AD pathophysiology. Some recent advances have brought modelling tools closer to human genetics, increasing the validity of both aetiological and translational endeavours.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小胶质细胞中的阿尔茨海默氏症基因:值得研究的风险。
尽管表达了许多关键的风险基因,但小胶质细胞在迟发性阿尔茨海默病病理生理中的作用有些模糊,据报道,各种表型要么是有害的,要么是保护性的。在此,我们回顾了临床和动物模型研究的一些关键发现,讨论了小胶质细胞遗传学在介导稳态扰动中的作用。我们注意到,保护性表型的损害可能包括小胶质细胞激活时间延长或不足,导致代谢组学(特别是脂质相关)过程失调,再加上动态反应中与年龄相关的不灵活性。小鼠遗传学和积极的转基因建模的不足意味着在病原学调查中应用当前方法的严重限制。尽管存在缺陷,但广泛使用的淀粉样变和牛头病变模型已被证明在解剖小胶质细胞对阿尔茨海默病病理生理的功能反应方面具有宝贵的价值。最近的一些进展使建模工具更接近人类遗传学,增加了病因学和转化努力的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Neurodegeneration
Molecular Neurodegeneration 医学-神经科学
CiteScore
23.00
自引率
4.60%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Molecular Neurodegeneration, an open-access, peer-reviewed journal, comprehensively covers neurodegeneration research at the molecular and cellular levels. Neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and prion diseases, fall under its purview. These disorders, often linked to advanced aging and characterized by varying degrees of dementia, pose a significant public health concern with the growing aging population. Recent strides in understanding the molecular and cellular mechanisms of these neurodegenerative disorders offer valuable insights into their pathogenesis.
期刊最新文献
Nuclear pore and nucleocytoplasmic transport impairment in oxidative stress-induced neurodegeneration: relevance to molecular mechanisms in Pathogenesis of Parkinson’s and other related neurodegenerative diseases Regulation of disease-associated microglia in the optic nerve by lipoxin B4 and ocular hypertension Stearoyl-CoA desaturase-1: a potential therapeutic target for neurological disorders Are oligodendrocytes the missing link in Alzheimer's disease and related dementia research? Contribution of amyloid deposition from oligodendrocytes in a mouse model of Alzheimer’s disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1