Mycosynthesis of silver nanoparticles using marine fungi and their antimicrobial activity against pathogenic microorganisms.

IF 3.6 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal, genetic engineering & biotechnology Pub Date : 2023-11-21 DOI:10.1186/s43141-023-00572-z
Manar A Basheer, Khaled Abutaleb, Nermine N Abed, Amal A I Mekawey
{"title":"Mycosynthesis of silver nanoparticles using marine fungi and their antimicrobial activity against pathogenic microorganisms.","authors":"Manar A Basheer, Khaled Abutaleb, Nermine N Abed, Amal A I Mekawey","doi":"10.1186/s43141-023-00572-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>At the present time, there is a persistent need to get rid of environmental contaminants by eco-friendly, sustainable, and economical technologies. Uncontrolled disposal practices of domestic and industrial solid and liquid wastes led to water pollution which has negative impacts on public health, environment, and socio-economic development. Several water-borne diseases are spreading man to man by microorganisms such as pathogenic bacteria. For the protection of water bodies, all wastewater from various sources should be managed and remediated properly. Myco-remediation is a form of bioremediation in which fungi are used to get rid of contaminants. Fungi are attractive agents for the biosynthesis of nanoparticles especially silver nanoparticles (AgNPs) which are considered one of the most widely utilized nanoparticles because of their unique characteristics such as antibacterial, antiviral, antifungal, and anti-inflammatory properties.</p><p><strong>Methods: </strong>This study uses silver nitrate and supernatants of four marine fungi; Penicillium simplicissimum, Aspergillus terreus, Aspergillus japonicus, and Aspergillus oryzae for extracellular biosynthesis of silver nanoparticles and to evaluate its activity against different pathogenic microorganisms. These nanoparticles may subsequently be applied for the treatment or nano-bioremediation of microbial contaminants in water bodies and improve water quality.</p><p><strong>Results: </strong>Silver nanoparticles were synthesized and the results revealed that spherical and well-dispersed nanoparticles of different sizes were formed with sizes ranging between 3.8 and 23 nm. Characterization results approved the existence of stable nanocrystalline elemental silver. Antibacterial activity results revealed that AgNPs can be used as a powerful antimicrobial agent for several pathogenic bacteria, yeast, and fungi. Among the biosynthesized NPs mediated by the four marine fungi, AgNPs mediated by A. japonicus (5 mM) had the highest antibacterial activity, while AgNPs mediated by Penicillium simplicissmum (8 mM) had the highest antifungal activity.</p><p><strong>Conclusion: </strong>Marine fungi can biosynthesize stable AgNPs that exhibit potent antimicrobial activity against a variety of pathogens.</p>","PeriodicalId":74026,"journal":{"name":"Journal, genetic engineering & biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660487/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal, genetic engineering & biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43141-023-00572-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Objectives: At the present time, there is a persistent need to get rid of environmental contaminants by eco-friendly, sustainable, and economical technologies. Uncontrolled disposal practices of domestic and industrial solid and liquid wastes led to water pollution which has negative impacts on public health, environment, and socio-economic development. Several water-borne diseases are spreading man to man by microorganisms such as pathogenic bacteria. For the protection of water bodies, all wastewater from various sources should be managed and remediated properly. Myco-remediation is a form of bioremediation in which fungi are used to get rid of contaminants. Fungi are attractive agents for the biosynthesis of nanoparticles especially silver nanoparticles (AgNPs) which are considered one of the most widely utilized nanoparticles because of their unique characteristics such as antibacterial, antiviral, antifungal, and anti-inflammatory properties.

Methods: This study uses silver nitrate and supernatants of four marine fungi; Penicillium simplicissimum, Aspergillus terreus, Aspergillus japonicus, and Aspergillus oryzae for extracellular biosynthesis of silver nanoparticles and to evaluate its activity against different pathogenic microorganisms. These nanoparticles may subsequently be applied for the treatment or nano-bioremediation of microbial contaminants in water bodies and improve water quality.

Results: Silver nanoparticles were synthesized and the results revealed that spherical and well-dispersed nanoparticles of different sizes were formed with sizes ranging between 3.8 and 23 nm. Characterization results approved the existence of stable nanocrystalline elemental silver. Antibacterial activity results revealed that AgNPs can be used as a powerful antimicrobial agent for several pathogenic bacteria, yeast, and fungi. Among the biosynthesized NPs mediated by the four marine fungi, AgNPs mediated by A. japonicus (5 mM) had the highest antibacterial activity, while AgNPs mediated by Penicillium simplicissmum (8 mM) had the highest antifungal activity.

Conclusion: Marine fungi can biosynthesize stable AgNPs that exhibit potent antimicrobial activity against a variety of pathogens.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用海洋真菌合成纳米银及其对病原微生物的抑菌活性。
目标:目前,人们一直需要通过环保、可持续和经济的技术来去除环境污染物。家庭和工业固体和液体废物不受控制的处置做法导致水污染,对公众健康、环境和社会经济发展产生负面影响。几种水媒疾病通过病原细菌等微生物在人与人之间传播。为保护水体,应妥善管理和修复各种来源的所有废水。真菌修复是一种利用真菌去除污染物的生物修复方法。真菌是生物合成纳米粒子尤其是银纳米粒子(AgNPs)的有吸引力的媒介,银纳米粒子被认为是应用最广泛的纳米粒子之一,因为它具有独特的特性,如抗菌、抗病毒、抗真菌和抗炎特性。方法:采用硝酸银和四种海洋真菌的上清液;单纯青霉、地曲霉、日本曲霉和米曲霉的胞外生物合成纳米银,并评价其对不同病原微生物的活性。这些纳米颗粒可用于水体中微生物污染物的处理或纳米生物修复,改善水质。结果:合成了银纳米颗粒,结果表明,银纳米颗粒粒径在3.8 ~ 23 nm之间,呈球形,分散良好。表征结果证实了稳定的元素银纳米晶的存在。抗菌活性结果表明,AgNPs对多种病原菌、酵母菌和真菌具有较强的抗菌活性。4种海洋真菌介导的AgNPs中,日本青霉(5 mM)介导的AgNPs抑菌活性最高,单纯青霉(8 mM)介导的AgNPs抑菌活性最高。结论:海洋真菌可以合成稳定的AgNPs,对多种病原菌具有较强的抑菌活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physiochemical analyses and molecular characterization of heavy metal-resistant bacteria from Ilesha gold mining sites in Nigeria. Whole genome sequence and comparative genomics analysis of multidrug-resistant Staphylococcus xylosus NM36 isolated from a cow with mastitis in Basrah city. Immunoinformatics-aided rational design of multiepitope-based peptide vaccine (MEBV) targeting human parainfluenza virus 3 (HPIV-3) stable proteins. Isolation of plant growth-promoting rhizobacteria from the agricultural fields of Tattiannaram, Telangana. Short tandem repeat (STR) variation from 6 cities in Iraq based on 15 loci.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1