{"title":"Preliminary evaluation for ultrasound-guided targeted prostate biopsy using a portable surgical robot: Ex vivo results","authors":"Wenhe Jiang, Yongzhuo Gao, Mingwei Wen, Zhichao Ye, Huageng Liang, Dongmei Wu, Wei Dong","doi":"10.1002/rcs.2597","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Robotic systems are increasingly used to enhance clinical outcomes in prostate intervention. To evaluate the clinical value of the proposed portable robot, the robot-assisted and robot-targeted punctures were validated experimentally.</p>\n </section>\n \n <section>\n \n <h3> Method</h3>\n \n <p>The robot registration utilising the electromagnetic tracker achieves coordinate transformation from the ultrasound (US) image to the robot. Subsequently, Transrectal ultrasound (TRUS)-guided phantom trials were conducted for robot-assisted, free-hand, and robot-targeted punctures.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The accuracy of robot registration was 0.95 mm, and the accuracy of robot-assisted, free-hand, and robot-targeted punctures was 2.38 ± 0.64 mm, 3.11 ± 0.72 mm, and 3.29 ± 0.83 mm sequentially.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The registration method has been successfully applied to robot-targeted puncture. Current results indicate that the accuracy of robot-targeted puncture is slightly inferior to that of manual operations. Moreover, in manual operation, robot-assisted puncture improves the accuracy of free-hand puncture. Accuracy superior to 3.5 mm demonstrates the clinical applicability of both robot-assisted and robot-targeted punctures.</p>\n </section>\n </div>","PeriodicalId":50311,"journal":{"name":"International Journal of Medical Robotics and Computer Assisted Surgery","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Robotics and Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcs.2597","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Robotic systems are increasingly used to enhance clinical outcomes in prostate intervention. To evaluate the clinical value of the proposed portable robot, the robot-assisted and robot-targeted punctures were validated experimentally.
Method
The robot registration utilising the electromagnetic tracker achieves coordinate transformation from the ultrasound (US) image to the robot. Subsequently, Transrectal ultrasound (TRUS)-guided phantom trials were conducted for robot-assisted, free-hand, and robot-targeted punctures.
Results
The accuracy of robot registration was 0.95 mm, and the accuracy of robot-assisted, free-hand, and robot-targeted punctures was 2.38 ± 0.64 mm, 3.11 ± 0.72 mm, and 3.29 ± 0.83 mm sequentially.
Conclusion
The registration method has been successfully applied to robot-targeted puncture. Current results indicate that the accuracy of robot-targeted puncture is slightly inferior to that of manual operations. Moreover, in manual operation, robot-assisted puncture improves the accuracy of free-hand puncture. Accuracy superior to 3.5 mm demonstrates the clinical applicability of both robot-assisted and robot-targeted punctures.
期刊介绍:
The International Journal of Medical Robotics and Computer Assisted Surgery provides a cross-disciplinary platform for presenting the latest developments in robotics and computer assisted technologies for medical applications. The journal publishes cutting-edge papers and expert reviews, complemented by commentaries, correspondence and conference highlights that stimulate discussion and exchange of ideas. Areas of interest include robotic surgery aids and systems, operative planning tools, medical imaging and visualisation, simulation and navigation, virtual reality, intuitive command and control systems, haptics and sensor technologies. In addition to research and surgical planning studies, the journal welcomes papers detailing clinical trials and applications of computer-assisted workflows and robotic systems in neurosurgery, urology, paediatric, orthopaedic, craniofacial, cardiovascular, thoraco-abdominal, musculoskeletal and visceral surgery. Articles providing critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies, commenting on ease of use, or addressing surgical education and training issues are also encouraged. The journal aims to foster a community that encompasses medical practitioners, researchers, and engineers and computer scientists developing robotic systems and computational tools in academic and commercial environments, with the intention of promoting and developing these exciting areas of medical technology.