Magdalena Woińska , Anna A. Hoser , Michał L. Chodkiewicz , Krzysztof Woźniak , A. Fitch (Editor)
{"title":"Enhancing hydrogen positions in X-ray structures of transition metal hydride complexes with dynamic quantum crystallography","authors":"Magdalena Woińska , Anna A. Hoser , Michał L. Chodkiewicz , Krzysztof Woźniak , A. Fitch (Editor)","doi":"10.1107/S205225252300951X","DOIUrl":null,"url":null,"abstract":"<div><p>Hirshfeld atom refinement with anisotropic hydrogen thermal motions estimated using sophisticated methods, such as NoMoRe and SHADE3, was applied to X-ray data collected for transition metal hydride complexes.</p></div><div><p>Hirshfeld atom refinement (HAR) is a method which enables the user to obtain more accurate positions of hydrogen atoms bonded to light chemical elements using X-ray data. When data quality permits, this method can be extended to hydrogen-bonded transition metals (TMs), as in hydride complexes. However, addressing hydrogen thermal motions with HAR, particularly in TM hydrides, presents a challenge. At the same time, proper description of thermal vibrations can be vital for determining hydrogen positions correctly. In this study, we employ tools such as SHADE3 and Normal Mode Refinement (NoMoRe) to estimate anisotropic displacement parameters (ADPs) for hydrogen atoms during HAR and IAM refinements performed for seven structures of TM (Fe, Ni, Cr, Nb, Rh and Os) and metalloid (Sb) hydride complexes for which both the neutron and the X-ray structures have been determined. A direct comparison between neutron and HAR/SHADE3/NoMoRe ADPs reveals that the similarity between neutron hydrogen ADPs and those estimated with NoMoRe or SHADE3 is significantly higher than when hydrogen ADPs are refined with HAR. Regarding TM—H bond lengths, traditional HAR exhibits a slight advantage over the other methods. However, combining NoMoRe/SHADE3 with HAR results in a minor decrease in agreement with neutron TM—H bond lengths. For the Cr complex, for which high-resolution X-ray data were collected, an investigation of resolution-related effects was possible.</p></div>","PeriodicalId":14775,"journal":{"name":"IUCrJ","volume":"11 1","pages":"Pages 45-56"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833390/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUCrJ","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2052252524000113","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hirshfeld atom refinement with anisotropic hydrogen thermal motions estimated using sophisticated methods, such as NoMoRe and SHADE3, was applied to X-ray data collected for transition metal hydride complexes.
Hirshfeld atom refinement (HAR) is a method which enables the user to obtain more accurate positions of hydrogen atoms bonded to light chemical elements using X-ray data. When data quality permits, this method can be extended to hydrogen-bonded transition metals (TMs), as in hydride complexes. However, addressing hydrogen thermal motions with HAR, particularly in TM hydrides, presents a challenge. At the same time, proper description of thermal vibrations can be vital for determining hydrogen positions correctly. In this study, we employ tools such as SHADE3 and Normal Mode Refinement (NoMoRe) to estimate anisotropic displacement parameters (ADPs) for hydrogen atoms during HAR and IAM refinements performed for seven structures of TM (Fe, Ni, Cr, Nb, Rh and Os) and metalloid (Sb) hydride complexes for which both the neutron and the X-ray structures have been determined. A direct comparison between neutron and HAR/SHADE3/NoMoRe ADPs reveals that the similarity between neutron hydrogen ADPs and those estimated with NoMoRe or SHADE3 is significantly higher than when hydrogen ADPs are refined with HAR. Regarding TM—H bond lengths, traditional HAR exhibits a slight advantage over the other methods. However, combining NoMoRe/SHADE3 with HAR results in a minor decrease in agreement with neutron TM—H bond lengths. For the Cr complex, for which high-resolution X-ray data were collected, an investigation of resolution-related effects was possible.
期刊介绍:
IUCrJ is a new fully open-access peer-reviewed journal from the International Union of Crystallography (IUCr).
The journal will publish high-profile articles on all aspects of the sciences and technologies supported by the IUCr via its commissions, including emerging fields where structural results underpin the science reported in the article. Our aim is to make IUCrJ the natural home for high-quality structural science results. Chemists, biologists, physicists and material scientists will be actively encouraged to report their structural studies in IUCrJ.