Adaptive VEM for variable data: convergence and optimality

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED IMA Journal of Numerical Analysis Pub Date : 2023-11-16 DOI:10.1093/imanum/drad085
L Beirão da Veiga, C Canuto, R H Nochetto, G Vacca, M Verani
{"title":"Adaptive VEM for variable data: convergence and optimality","authors":"L Beirão da Veiga, C Canuto, R H Nochetto, G Vacca, M Verani","doi":"10.1093/imanum/drad085","DOIUrl":null,"url":null,"abstract":"We design an adaptive virtual element method (AVEM) of lowest order over triangular meshes with hanging nodes in 2d, which are treated as polygons. AVEM hinges on the stabilization-free a posteriori error estimators recently derived in Beirão da Veiga et al. (2023, Adaptive VEM: stabilization-free a posteriori error analysis and contraction property. SIAM J. Numer. Anal., 61, 457–494). The crucial property, which also plays a central role in this paper, is that the stabilization term can be made arbitrarily small relative to the a posteriori error estimators upon increasing the stabilization parameter. Our AVEM concatenates two modules, GALERKIN and DATA. The former deals with piecewise constant data and is shown in the above article to be a contraction between consecutive iterates. The latter approximates general data by piecewise constants to a desired accuracy. AVEM is shown to be convergent and quasi-optimal, in terms of error decay versus degrees of freedom, for solutions and data belonging to appropriate approximation classes. Numerical experiments illustrate the interplay between these two modules and provide computational evidence of optimality.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drad085","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We design an adaptive virtual element method (AVEM) of lowest order over triangular meshes with hanging nodes in 2d, which are treated as polygons. AVEM hinges on the stabilization-free a posteriori error estimators recently derived in Beirão da Veiga et al. (2023, Adaptive VEM: stabilization-free a posteriori error analysis and contraction property. SIAM J. Numer. Anal., 61, 457–494). The crucial property, which also plays a central role in this paper, is that the stabilization term can be made arbitrarily small relative to the a posteriori error estimators upon increasing the stabilization parameter. Our AVEM concatenates two modules, GALERKIN and DATA. The former deals with piecewise constant data and is shown in the above article to be a contraction between consecutive iterates. The latter approximates general data by piecewise constants to a desired accuracy. AVEM is shown to be convergent and quasi-optimal, in terms of error decay versus degrees of freedom, for solutions and data belonging to appropriate approximation classes. Numerical experiments illustrate the interplay between these two modules and provide computational evidence of optimality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可变数据的自适应VEM:收敛性和最优性
本文设计了一种最低阶自适应虚元法(AVEM),将二维三角形网格作为多边形处理。AVEM依赖于最近在beir o da Veiga等人(2023)中导出的无稳定化后检误差估计,自适应VEM:无稳定化后检误差分析和收缩特性。SIAM J. number。分析的, 61, 457-494)。关键的性质,也是在本文中起中心作用,是稳定项可以使任意小相对于后检误差估计在增加稳定参数。我们的AVEM连接两个模块,GALERKIN和DATA。前者处理分段常量数据,并在上面的文章中显示为连续迭代之间的收缩。后者通过分段常数逼近一般数据,达到所需的精度。对于属于适当近似类的解和数据,AVEM被证明是收敛的和准最优的,就误差衰减与自由度而言。数值实验说明了这两个模块之间的相互作用,并提供了最优性的计算证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
期刊最新文献
Stability estimates of Nyström discretizations of Helmholtz decomposition boundary integral equation formulations for the solution of Navier scattering problems in two dimensions with Dirichlet boundary conditions Positive definite functions on a regular domain An extension of the approximate component mode synthesis method to the heterogeneous Helmholtz equation Time-dependent electromagnetic scattering from dispersive materials An exponential stochastic Runge–Kutta type method of order up to 1.5 for SPDEs of Nemytskii-type
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1