Identification of brain tumors based on digitized parameters from magnetic resonance imaging results

A.M. Al-Ansi , M. Almadi , V. Ryabtsev , T. Utkina
{"title":"Identification of brain tumors based on digitized parameters from magnetic resonance imaging results","authors":"A.M. Al-Ansi ,&nbsp;M. Almadi ,&nbsp;V. Ryabtsev ,&nbsp;T. Utkina","doi":"10.1016/j.exco.2023.100125","DOIUrl":null,"url":null,"abstract":"<div><p>A methodology is proposed for identifying brain tumors by dividing the database into four parts. The results obtained from the study of sample specimens for each type of brain tumor showed a high degree of similarity in recognition. This methodology can be applied in healthcare facilities to improve the accuracy of disease diagnosis.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"4 ","pages":"Article 100125"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X23000277/pdfft?md5=f3100a0e2172cdec05b25d019b3236c5&pid=1-s2.0-S2666657X23000277-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X23000277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A methodology is proposed for identifying brain tumors by dividing the database into four parts. The results obtained from the study of sample specimens for each type of brain tumor showed a high degree of similarity in recognition. This methodology can be applied in healthcare facilities to improve the accuracy of disease diagnosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于磁共振成像结果数字化参数的脑肿瘤识别
提出了一种将数据库分为四部分的脑肿瘤识别方法。对每一种脑肿瘤样本的研究结果显示,在识别上具有高度的相似性。该方法可应用于医疗机构,以提高疾病诊断的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Automation of image processing through ML algorithms of GRASS GIS using embedded Scikit-Learn library of Python Counterexamples for your calculus course Hölder’s inequality for shifted quantum integral operator Solving change of basis from Bernstein to Chebyshev polynomials Asymptotic behavior of the empirical checkerboard copula process for binary data: An educational presentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1