Stochastic analysis and reliability assessment of critical RC structural components considering material properties uncertainty

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL Structural Safety Pub Date : 2023-11-22 DOI:10.1016/j.strusafe.2023.102412
A.R. Ibrahim , D.A. Makhloof
{"title":"Stochastic analysis and reliability assessment of critical RC structural components considering material properties uncertainty","authors":"A.R. Ibrahim ,&nbsp;D.A. Makhloof","doi":"10.1016/j.strusafe.2023.102412","DOIUrl":null,"url":null,"abstract":"<div><p>The unavoidable heterogeneity in the mechanical characteristics of concrete is widely acknowledged. Although it is widely considered as either perfectly correlated or entirely independent random variables in engineering practice; however, such treatment is illogical, and the outcomes may be deceptive. In high-rise buildings comprised of multiple structural components, it is crucial to consider the material properties’ spatial variability (MPSV) to obtain a reliable structural response and avoid damage to these structures. To this end, three main components, including column, rectangular shear wall, and U-shaped shear wall, are considered herein to investigate their stochastic response. The MPSV is represented by a covariance matrix decomposition-based random field generator combined with a GF-discrepancy-based point selection strategy to generate samples efficiently. A simplified strategy is developed to represent the random field for the U-shaped wall. Moreover, the probability density evolution method combined with the extreme value event is employed to obtain the failure probability of the studied components, where failure probabilities of 18%, 23%, and 32% are recorded for the studied RC column, rectangular shear wall, and U-shaped shear wall, respectively. Furthermore, different failure modes were identified and could not be determined through the deterministic analysis, highlighting the importance of accounting for material uncertainty. The proposed framework proved that the stochastic response and non-linear behavior of the considered components could be well captured and provide full perspective about the uncertainty quantification and reliability assessment and can be further implemented to capture the stochastic response and safety assessment of high-rise buildings.</p></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"107 ","pages":"Article 102412"},"PeriodicalIF":5.7000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473023000991","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The unavoidable heterogeneity in the mechanical characteristics of concrete is widely acknowledged. Although it is widely considered as either perfectly correlated or entirely independent random variables in engineering practice; however, such treatment is illogical, and the outcomes may be deceptive. In high-rise buildings comprised of multiple structural components, it is crucial to consider the material properties’ spatial variability (MPSV) to obtain a reliable structural response and avoid damage to these structures. To this end, three main components, including column, rectangular shear wall, and U-shaped shear wall, are considered herein to investigate their stochastic response. The MPSV is represented by a covariance matrix decomposition-based random field generator combined with a GF-discrepancy-based point selection strategy to generate samples efficiently. A simplified strategy is developed to represent the random field for the U-shaped wall. Moreover, the probability density evolution method combined with the extreme value event is employed to obtain the failure probability of the studied components, where failure probabilities of 18%, 23%, and 32% are recorded for the studied RC column, rectangular shear wall, and U-shaped shear wall, respectively. Furthermore, different failure modes were identified and could not be determined through the deterministic analysis, highlighting the importance of accounting for material uncertainty. The proposed framework proved that the stochastic response and non-linear behavior of the considered components could be well captured and provide full perspective about the uncertainty quantification and reliability assessment and can be further implemented to capture the stochastic response and safety assessment of high-rise buildings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑材料性能不确定性的RC关键构件随机分析与可靠性评估
混凝土力学特性中不可避免的不均一性是公认的。虽然在工程实践中,它被广泛认为是完全相关或完全独立的随机变量;然而,这样的治疗是不合逻辑的,而且结果可能具有欺骗性。在由多个结构构件组成的高层建筑中,考虑材料性能的空间变异性(MPSV)对于获得可靠的结构响应和避免结构损伤至关重要。为此,本文考虑柱、矩形剪力墙和u形剪力墙三种主要构件,研究它们的随机响应。MPSV采用基于协方差矩阵分解的随机场生成器和基于gf -差值的点选择策略相结合来高效地生成样本。提出了一种表示u型壁随机场的简化策略。采用概率密度演化法结合极值事件得到了研究构件的破坏概率,其中RC柱、矩形剪力墙和u形剪力墙的破坏概率分别为18%、23%和32%。此外,还识别了不同的失效模式,这些模式无法通过确定性分析确定,这突出了考虑材料不确定性的重要性。该框架可以很好地捕获所考虑构件的随机响应和非线性行为,为不确定性量化和可靠性评估提供了充分的视角,可以进一步实现高层建筑随机响应的捕获和安全评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Structural Safety
Structural Safety 工程技术-工程:土木
CiteScore
11.30
自引率
8.60%
发文量
67
审稿时长
53 days
期刊介绍: Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment
期刊最新文献
Bivariate cubic normal distribution for non-Gaussian problems Yet another Bayesian active learning reliability analysis method Improved Bayesian model updating of geomaterial parameters for slope reliability assessment considering spatial variability Editorial Board Data-enhanced design charts for efficient reliability-based design of geotechnical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1