Y Yoshimoto, Y Hara, T Abe, A Akamine, K Maeda, M Aono
{"title":"[Basic studies on CaO-P2O5-MgO-SiO2-CaF system glass ceramics. 1. Morphology under the phase-contrast microscope and growth of cultured cells].","authors":"Y Yoshimoto, Y Hara, T Abe, A Akamine, K Maeda, M Aono","doi":"10.2329/perio.31.640","DOIUrl":null,"url":null,"abstract":"<p><p>In order to determine the biocompatibility of glass ceramics which is one of the new biomaterials, in vitro studies were carried out by a cell culture method using four established cell lines. Materials used were glass ceramic disks with a diameter of 3 mm, and polystyrene coverslips of the same size as controls of the growth curve. Cells of each line were inoculated into 24-well multiplates at an appropriate density onto glass ceramic disks, and examined by phase contrast microscopy on the 1st, 3rd, 6th and 8th day. In addition, doubling time and saturation density were calculated from the growth curve. The results obtained were as follows. 1) Phase-contrast microscopy revealed that cells of each line attached to the disk within 24 hours and their numbers increased with time. After 8 days of cultivation, all of them reached confluence. 2) Contact with the glass ceramics did not cause cellular death or degeneration. Furthermore, the cultured cells showed the same morphological features as the control cells. 3) According to the growth curves, doubling time of all cells cultured with glass ceramics was shorter than that of the control cultures. On the other hand, saturation density was reduced to a minimum of 80% of the controls. These findings led to the conclusion that glass ceramic materials do not prevent the growth of cultured cells. According to the above results, glass ceramics possess the characteristics needed for bone grafts and implant materials.</p>","PeriodicalId":19428,"journal":{"name":"Nihon Shishubyo Gakkai kaishi","volume":"31 2","pages":"640-50"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2329/perio.31.640","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nihon Shishubyo Gakkai kaishi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2329/perio.31.640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In order to determine the biocompatibility of glass ceramics which is one of the new biomaterials, in vitro studies were carried out by a cell culture method using four established cell lines. Materials used were glass ceramic disks with a diameter of 3 mm, and polystyrene coverslips of the same size as controls of the growth curve. Cells of each line were inoculated into 24-well multiplates at an appropriate density onto glass ceramic disks, and examined by phase contrast microscopy on the 1st, 3rd, 6th and 8th day. In addition, doubling time and saturation density were calculated from the growth curve. The results obtained were as follows. 1) Phase-contrast microscopy revealed that cells of each line attached to the disk within 24 hours and their numbers increased with time. After 8 days of cultivation, all of them reached confluence. 2) Contact with the glass ceramics did not cause cellular death or degeneration. Furthermore, the cultured cells showed the same morphological features as the control cells. 3) According to the growth curves, doubling time of all cells cultured with glass ceramics was shorter than that of the control cultures. On the other hand, saturation density was reduced to a minimum of 80% of the controls. These findings led to the conclusion that glass ceramic materials do not prevent the growth of cultured cells. According to the above results, glass ceramics possess the characteristics needed for bone grafts and implant materials.