James Fallon, David Brayshaw, John Methven, Kjeld Jensen, Louise Krug
{"title":"A new framework for using weather-sensitive surplus power reserves in critical infrastructure","authors":"James Fallon, David Brayshaw, John Methven, Kjeld Jensen, Louise Krug","doi":"10.1002/met.2158","DOIUrl":null,"url":null,"abstract":"<p>Reserve power systems are widely used to provide power to critical infrastructure systems in the event of power outages. The reserve power system may be subject to regulation, typically focussing on a strict operational time commitment, but the energy involved in supplying reserve power may be highly variable. For example, if heating or cooling is involved, energy consumption may be strongly influenced by prevailing weather conditions and seasonality. Replacing legacy assets (often diesel generators) with modern technologies could offer potential benefits and services back to the wider electricity system when not in use, therefore supporting a transition to low-carbon energy networks. Drawing on the Great Britain telecommunications systems as an example, this paper demonstrates that meteorological reanalyses can be used to evaluate capacity requirements to maintain the regulated target of 5-days operational reserve. Across three case-study regions with diverse weather sensitivities, infrastructure with cooling-driven electricity demand is shown to increase energy consumption during summer, thus determining the overall capacity of the reserve required and the availability of ‘surplus’ capacity. Lower risk tolerance is shown to lead to a substantial cost increase in terms of capacity required but also enhanced opportunities for surplus capacity. The use of meteorological forecast information is shown to facilitate increased surplus capacity. Availability of surplus capacity is compared to a measure of supply–stress (demand-net-wind) on the wider energy network. For infrastructure with cooling-driven demand (typical of most UK telecommunication assets), it is shown that surplus availability peaks during periods of supply–stress, offering the greatest potential benefit to the national electricity grid.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"30 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/met.2158","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.2158","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Reserve power systems are widely used to provide power to critical infrastructure systems in the event of power outages. The reserve power system may be subject to regulation, typically focussing on a strict operational time commitment, but the energy involved in supplying reserve power may be highly variable. For example, if heating or cooling is involved, energy consumption may be strongly influenced by prevailing weather conditions and seasonality. Replacing legacy assets (often diesel generators) with modern technologies could offer potential benefits and services back to the wider electricity system when not in use, therefore supporting a transition to low-carbon energy networks. Drawing on the Great Britain telecommunications systems as an example, this paper demonstrates that meteorological reanalyses can be used to evaluate capacity requirements to maintain the regulated target of 5-days operational reserve. Across three case-study regions with diverse weather sensitivities, infrastructure with cooling-driven electricity demand is shown to increase energy consumption during summer, thus determining the overall capacity of the reserve required and the availability of ‘surplus’ capacity. Lower risk tolerance is shown to lead to a substantial cost increase in terms of capacity required but also enhanced opportunities for surplus capacity. The use of meteorological forecast information is shown to facilitate increased surplus capacity. Availability of surplus capacity is compared to a measure of supply–stress (demand-net-wind) on the wider energy network. For infrastructure with cooling-driven demand (typical of most UK telecommunication assets), it is shown that surplus availability peaks during periods of supply–stress, offering the greatest potential benefit to the national electricity grid.
期刊介绍:
The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including:
applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits;
forecasting, warning and service delivery techniques and methods;
weather hazards, their analysis and prediction;
performance, verification and value of numerical models and forecasting services;
practical applications of ocean and climate models;
education and training.