{"title":"Photovoltaics literature survey (No. 186)","authors":"Ziv Hameiri","doi":"10.1002/pip.3748","DOIUrl":null,"url":null,"abstract":"<p>In order to help readers stay up-to-date in the field, each issue of <i>Progress in Photovoltaics</i> will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including <i>IEEE Journal of Photovoltaics</i>, <i>Solar Energy Materials and Solar Cells</i>, <i>Renewable Energy</i>, <i>Renewable and Sustainable Energy Reviews</i>, <i>Journal of Applied Physics</i>, and <i>Applied Physics Letters</i>. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at <span>[email protected]</span>.</p><p>Schmid M. <b>Revisiting the definition of solar cell generations.</b> <i>Advanced Optical Materials</i> 2023; 2300697.</p><p>Ruud CJ, Gordon JM, Giebink NC. <b>Microcell concentrating photovoltaics for space.</b> <i>Joule</i> 2023; <b>7</b>(6): 1093–1098.</p><p>van Sark W. <b>Photovoltaics performance monitoring is essential in a 100% renewables-based society.</b> <i>Joule</i> 2023; <b>7</b>(7): 1388–1393.</p><p>Kittner N. <b>Breaking down costs.</b> <i>Nature Energy</i> 2023; <b>8</b>(8): 779–780.</p><p>Klemun MM, Kavlak G, McNerney J, et al <b>Mechanisms of hardware and soft technology evolution and the implications for solar energy cost trends.</b> <i>Nature Energy</i> 2023; <b>8</b>(8): 827.</p><p>Holovsky J, Ridzonova K, Amalathas AP, et al <b>Below the Urbach edge: Solar cell loss analysis based on full external quantum efficiency spectra.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 3221–3227.</p><p>Belabbes F, Cotfas DT, Cotfas PA, et al <b>Using the snake optimization metaheuristic algorithms to extract the photovoltaic cells parameters.</b> <i>Energy Conversion and Management</i> 2023; <b>292</b>: 117373.</p><p>Otamendi U, Martinez I, Olaizola IG, et al <b>A scalable framework for annotating photovoltaic cell defects in electroluminescence images.</b> <i>IEEE Transactions on Industrial Informatics</i> 2023; <b>19</b>(9): 9361–9369.</p><p>Vukovic M, Hillestad M, Jakovljevic M, et al <b>Photoluminescence imaging of field-installed photovoltaic modules in diffuse irradiance.</b> <i>Journal of Applied Physics</i> 2023; <b>134</b>(7): 074903.</p><p>Vukovic M, Liland KH, Indahl UG, et al <b>Extraction of photoluminescence with Pearson correlation coefficient from images of field-installed photovoltaic modules.</b> <i>Journal of Applied Physics</i> 2023; <b>133</b>(21): 214901.</p><p>Zhao YR, Descamps J, Al Bast NA, et al <b>All-optical electrochemiluminescence.</b> <i>Journal of the American Chemical Society</i> 2023; <b>145</b>(31): 17420–17426.</p><p>Abdullah-Vetter Z, Dwivedi P, Buratti Y, et al <b>Advanced analysis of internal quantum efficiency measurements using machine learning.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(8): 790–802.</p><p>Steiner M, Siefer G. <b>Translation of outdoor tandem PV module I–V measurements to a STC power rating.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(8): 862–869.</p><p>Weber J, Roessler T. <b>How to assess the electrical quality of solar cell interconnection in shingle solar modules.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(9): 949–959.</p><p>Xu W, Monokroussos C, Müllejans H, et al <b>Performance evaluation of procedures used to correct measured I-V characteristics of photovoltaic modules for temperature and irradiance.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(10): 981–998.</p><p>Chen J, Lou YH, Wang ZK. <b>Characterizing spatial and energetic distributions of trap states toward highly efficient perovskite photovoltaics.</b> <i>Small</i> 2023; 2305064.</p><p>Krisztián D, Korsós F, Havasi G. <b>Simultaneous measurement of charge carrier concentration, mobility, and lifetime.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112461.</p><p>Sen C, Wu X, Wang H, et al <b>Accelerated damp-heat testing at the cell-level of bifacial silicon HJT, PERC and TOPCon solar cells using sodium chloride.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112554.</p><p>Turek M, Meusel M. <b>Automated classification of electroluminescence images using artificial neural networks in correlation to solar cell performance parameters.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112483.</p><p>Xu ZY, Liu XN, Zhou JK, et al <b>Aluminum and molybdenum Co-doped zinc oxide films as dual-functional carrier-selective contact for silicon solar cells.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(29): 34964–34972.</p><p>Urdiroz U, Itoiz I, Sevilla J, et al <b>Combining radiative cooling and light trapping strategies for improved performance of PERC bifacial silicon solar cells.</b> <i>Energy Reports</i> 2023; <b>10</b>: 1116–1125.</p><p>Getz MN, Povoli M, Koybasi O, et al <b>Gamma-radiation hardness and long-term stability of ALD-Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>surface passivated Si.</b> <i>Journal of Applied Physics</i> 2023; <b>133</b>(15): 154501.</p><p>Masuch P, Reichel C, Bonilla RS, et al <b>Bias-voltage photoconductance and photoluminescence for the determination of silicon-dielectric interface properties in SiO</b><sub><b>2</b></sub><b>/Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>stacks.</b> <i>Journal of Applied Physics</i> 2023; <b>134</b>(7): 075705.</p><p>Liu XN, Zhou JK, Ding Y, et al <b>Atomic-layer-deposited H:MoO</b><sub><b>x</b></sub> <b>function layer as efficient hole selective passivating contact in silicon solar cells.</b> <i>Materials Today Energy</i> 2023; <b>36</b>: 101362.</p><p>Wang YH, Gu ZY, Li L, et al <b>Interfacial engineering of ZnS passivating contacts for crystalline silicon solar cells achieving 20% efficiency.</b> <i>Materials Today Energy</i> 2023; <b>35</b>: 101336.</p><p>Chu FH, Qu XL, He YC, et al <b>Prediction of sub-pyramid texturing as the next step towards high efficiency silicon heterojunction solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 3596.</p><p>Bektaş G, Seyrek S, Keçeci AE, et al <b>A comparative study on alternative industrial manufacturing routes for bifacial n-PERT silicon solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(10): 1016–1022.</p><p>Li X, Yang Y, Jiang K, et al <b>Potential-free sodium-induced degradation of silicon heterojunction solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(9): 939–948.</p><p>Akgayev B, Sezgin A, Yilmaz M, et al <b>Screen printable fire through nickel contacts for silicon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>261</b>: 112528.</p><p>Cheng D, Gao Y. <b>Effect of the diamond saw wires capillary adhesion on the thickness variation of ultra-thin photovoltaic silicon wafers during slicing.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>261</b>: 112525.</p><p>Ding D, Du D, Quan C, et al <b>Application of dual-layer polysilicon deposited by PECVD in n-type TOPCon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>261</b>: 112519.</p><p>Du M, Jia R, Li X, et al <b>Theoretical analysis of backside polycrystalline silicon layer in the TOPCon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112555.</p><p>Gageot T, Veirman J, Jay F, et al <b>Feasibility test of drastic indium cut down in SHJ solar cells and modules using ultra-thin ITO layers.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>261</b>: 112512.</p><p>Garland BM, Davis BE, Strandwitz NC. <b>Investigating the effect of aluminum oxide fixed charge on Schottky barrier height in molybdenum oxide-based selective contacts.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112537.</p><p>Guo C, Jia R, Tian X, et al <b>Study on the influence of micro-alkali texturing and micro-alkali polishing process on the passivation and contact performance of n-TOPCon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112476.</p><p>Hu Z, Cong M, Zhang X, et al <b>Effect of metal impurities concentration on electrical properties in n-type recharged-Czochralski silicon.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112482.</p><p>Huang X, Zhou Y, Guo W, et al <b>Zr-doped indium oxide films for silicon heterojunction solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112480.</p><p>Maischner F, Greulich JM, Kwapil W, et al <b>LeTID mitigation via an adapted firing process in p-type PERC cells from gallium-doped Czochralski silicon.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112529.</p><p>Maischner F, Kwapil W, Greulich JM, et al <b>Process influences on LeTID in Ga-doped silicon.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112451.</p><p>Simon J, Fischer-Süßlin R, Zerfaß R, et al <b>Correlation study between LeTID defect density, hydrogen and firing profile in Ga-doped crystalline silicon.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112456.</p><p>Wang X, Gao K, Xu D, et al <b>Atomic-layer-deposited BO</b><sub><b>x</b></sub><b>/Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>stack for crystalline silicon surface passivation.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112481.</p><p>Yu J, Chen Y, He J, et al <b>Enhancing poly-Si contact through a highly conductive and ultra-thin TiN layer for high-efficiency passivating contact silicon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112491.</p><p>Choi YJ, Lim SY, Park JH, et al <b>Atomic layer deposition-free monolithic perovskite/perovskite/silicon triple-junction solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 3141–3146.</p><p>Bai YM, Han F, Zeng R, et al <b>Synergy of the transmittance fluctuation factor and absorption selectivity for efficient semitransparent perovskite/organic tandem solar cells with high color-fidelity.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(33): 17514–17524.</p><p>Harter A, Mariotti S, Korte L, et al <b>Double-sided nano-textured surfaces for industry compatible high-performance silicon heterojunction and perovskite/silicon tandem solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(8): 813–823.</p><p>Peters IM, Rodríguez Gallegos CD, Lüer L, et al <b>Practical limits of multijunction solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(10): 1006–1015.</p><p>Singh M, Datta K, Amarnath A, et al <b>Crystalline silicon solar cells with thin poly-SiO</b><sub><b>x</b></sub> <b>carrier-selective passivating contacts for perovskite/c-Si tandem applications.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(9): 877–887.</p><p>Wang G, Yue Z, Huang Z, et al <b>High-performance perovskite/silicon heterojunction solar cells enabled by industrially compatible postannealing.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(9): 921–930.</p><p>Chin XY, Turkay D, Steele JA, et al <b>Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells.</b> <i>Science</i> 2023; <b>381</b>(6653): 59–62.</p><p>De Wolf S, Aydin E. <b>Tandems have the power perovskite-silicon tandem solar cells b reak the 30% efficiency threshold.</b> <i>Science</i> 2023; <b>381</b>(6653): 30–31.</p><p>Mariotti S, Kohnen E, Scheler F, et al <b>Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells.</b> <i>Science</i> 2023; <b>381</b>(6653): 63–69.</p><p>De Rose A, Erath D, Nikitina V, et al <b>Low-temperature metallization & interconnection for silicon heterojunction and perovskite silicon tandem solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>261</b>: 112515.</p><p>Li Y, Wang X, Xu Q, et al <b>Nanocrystalline silicon-oxygen based tunneling recombination junctions in perovskite/silicon heterojunction tandem solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112539.</p><p>Cao XJ, Guo JX, Li ZX, et al <b>A broad-spectrum solid additive to further boost high-efficiency organic solar cells via morphology regulation.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(8): 3494–3503.</p><p>Muller JS, Comi M, Eisner F, et al <b>Charge-transfer state dissociation efficiency can limit free charge generation in low-offset organic solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(8): 3387–3397.</p><p>Panidi J, Mazzolini E, Eisner F, et al <b>Biorenewable solvents for high-performance organic solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 3038–3047.</p><p>Li DH, Wang L, Guo CH, et al <b>Co-crystallization of fibrillar polymer donors for efficient ternary organic solar cells.</b> <i>Acs Materials Letters</i> 2023; <b>5</b>(8): 2065–2073.</p><p>Zhang HR, Ran GL, Cui XY, et al <b>Mitigating exciton recombination losses in organic solar cells by engineering nonfullerene molecular crystallization behavior.</b> <i>Advanced Energy Materials</i> 2023; 2302063.</p><p>Song W, Ye QR, Yang SC, et al <b>Ultra robust and highly efficient flexible organic solar cells with over 18% efficiency realized by incorporating a linker dimerized acceptor.</b> <i>Angewandte Chemie-International Edition</i> 2023; <b>62</b>(41): e202310034.</p><p>Jeon SJ, Kim YC, Kim JY, et al <b>Molecular design of cost-effective donor polymers with high visible transmission for eco-friendly and efficient semitransparent organic solar cells.</b> <i>Chemical Engineering Journal</i> 2023; <b>472</b>: 144850.</p><p>Song X, Xu H, Jiang XY, et al <b>Film-formation dynamics coordinated by intermediate state engineering enables efficient thickness-insensitive organic solar cells.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(8): 3441–3452.</p><p>Zhang KN, Jiang ZA, Qiao JW, et al <b>Dredging photocarrier trapping pathways via “charge bridge” driven exciton-phonon decoupling enables efficient and photothermal stable quaternary organic solar cells.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(8): 3350–3362.</p><p>Mondelli P, Kaienburg P, Silvestri F, et al <b>Understanding the role of non-fullerene acceptor crystallinity in the charge transport properties and performance of organic solar cells.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(30): 16263–16278.</p><p>Bai Y, Zhang Z, Zhou QJ, et al <b>Geometry design of tethered small-molecule acceptor enables highly stable and efficient polymer solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 2926.</p><p>Liang HZ, Bi XQ, Chen HB, et al <b>A rare case of brominated small molecule acceptors for high-efficiency organic solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 4707.</p><p>Paleti SHK, Hultmark S, Han JH, et al <b>Hexanary blends: A strategy towards thermally stable organic photovoltaics.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 4608.</p><p>Zeng R, Zhu L, Zhang M, et al <b>All-polymer organic solar cells with nano-to-micron hierarchical morphology and large light receiving angle.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 4148.</p><p>Sung Y-M, Tsao C-S, Cha H-C, et al <b>High transparency and performance slot-die-coated large-area polymer solar module.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(8): 803–812.</p><p>Feroze S, Distler A, Forberich K, et al <b>Comparative analysis of outdoor energy harvest of organic and silicon solar modules for applications in BIPV systems.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111894.</p><p>Tang YH, Tan WL, Fei ZP, et al <b>Different energetics at donor:acceptor interfaces in bilayer and bulk-heterojunction polymer:non-fullerene organic solar cells.</b> <i>Solar RRL</i> 2023; 2300471.</p><p>Loague Q, Keller ND, Muller A, et al <b>Impact of molecular orientation on lateral and interfacial electron transfer at oxide interfaces.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(28): 34249–34262.</p><p>Castillo-Rodriguez J, Ortiz PD, Mahmood R, et al <b>The development of Au-titania photoanode composites toward semiflexible dye-sensitized solar cells.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111955.</p><p>Ghosh S, Pariari D, Behera T, et al <b>Buried interface passivation of perovskite solar cells by atomic layer deposition of Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub>. <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 3112–3,113.</p><p>Kitamura T, Wang L, Zhang Z, et al <b>Sn perovskite solar cells with tin oxide nanoparticle layer as hole transport layer.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(8): 3565–3568.</p><p>Baumeler T, Saleh AA, Wani TA, et al <b>Champion device architectures for low-cost and stable single-junction perovskite solar cells.</b> <i>Acs Materials Letters</i> 2023; <b>5</b>(9): 2408–2421.</p><p>Zhou YH, Yan DD, Zhang H, et al <b>Ionic liquid-mediated intermediate phase adduct constructing for highly stable lead-free perovskite solar cells.</b> <i>Acs Materials Letters</i> 2023; <b>5</b>(8): 2096–2103.</p><p>Yue T, Li K, Li X, et al <b>A binary solution strategy enables high-efficiency quasi-2D perovskite solar cells with excellent thermal stability.</b> <i>Acs Nano</i> 2023; <b>17</b>(15): 14632–14643.</p><p>Wu ZF, Jiang MW, Liu ZH, et al <b>Highly efficient perovskite solar cells enabled by multiple ligand passivation.</b> <i>Advanced Energy Materials</i> 2023; <b>13</b>(27): 1903696.</p><p>Ulatowski AM, Elmestekawy KA, Patel JB, et al <b>Contrasting charge-carrier dynamics across key metal-halide perovskite compositions through in situ simultaneous probes.</b> <i>Advanced Functional Materials</i> 2023; 2305283.</p><p>Kim JH, Oh CM, Hwang IW, et al <b>Efficient and stable quasi-2D Ruddlesden-Popper perovskite solar cells by tailoring crystal orientation and passivating surface defects.</b> <i>Advanced Materials</i> 2023; <b>35</b>(31): 2302143.</p><p>Rao H, Su Y, Liu GL, et al <b>Monodisperse adducts-induced homogeneous nucleation towards high-quality tin-based perovskite film.</b> <i>Angewandte Chemie-International Edition</i> 2023; <b>62</b>(33): e202306712.</p><p>Ning L, Zha LY, Duan RZ, et al <b>Fabrication of perovskite solar cells with PCE of 21.84% in open air by bottom-up defect passivation and stress releasement.</b> <i>Chemical Engineering Journal</i> 2023; <b>471</b>: 144279.</p><p>Zhou CC, Wang T, Xu JQ, et al <b>Regulating molecular stacking to construct a superior interfacial contact for highly efficient and stable perovskite solar cells.</b> <i>Chemical Engineering Journal</i> 2023; <b>472</b>: 144975.</p><p>Jiang Q, Song ZN, Bramante RC, et al <b>Highly efficient bifacial single-junction perovskite solar cells.</b> <i>Joule</i> 2023; <b>7</b>(7): 1543–1555.</p><p>Liu K, Rafique S, Musolino SF, et al <b>Covalent bonding strategy to enable non-volatile organic cation perovskite for highly stable and efficient solar cells.</b> <i>Joule</i> 2023; <b>7</b>(5): 1033–1050.</p><p>Kim D, Yun JS, Sagotra A, et al <b>Charge carrier transport properties of twin domains in halide perovskites.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(31): 16743–16754.</p><p>Yang Y, Chang Q, Yang YY, et al <b>Multifunctional molecule interface modification for high-performance inverted wide-bandgap perovskite cells and modules.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(31): 16871–16877.</p><p>Pariari D, Mehta S, Mandal S, et al <b>Realizing the lowest bandgap and exciton binding energy in a two-dimensional lead halide system.</b> <i>Journal of the American Chemical Society</i> 2023; <b>145</b>(29): 15896–15905.</p><p>Chen J, Lou YH, Wang KL, et al <b>Front electric-field enabling highly efficient perovskite photovoltaics.</b> <i>Nano Energy</i> 2023; <b>115</b>: 108692.</p><p>Chen RH, Yang Y, Dai ZY, et al <b>Patch-healed grain boundary strategy to stabilize perovskite films for high-performance solar modules.</b> <i>Nano Energy</i> 2023; <b>115</b>: 108759.</p><p>Li XG, Xie FM, Rafique S, et al <b>Spectral response regulation strategy by downshifting materials to improve efficiency of flexible perovskite solar cells.</b> <i>Nano Energy</i> 2023; <b>114</b>: 108619.</p><p>Wu ZF, Bi EB, Ono LK, et al <b>Passivation strategies for enhancing device performance of perovskite solar cells.</b> <i>Nano Energy</i> 2023; <b>115</b>: 108731.</p><p>Song ZL, Yang J, Dong XY, et al <b>Inverted wide-bandgap 2D/3D perovskite solar cells with >22% efficiency and low voltage loss.</b> <i>Nano Letters</i> 2023; <b>23</b>(14): 6705–6712.</p><p>Fehr AMK, Agrawal A, Mandani F, et al <b>Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 3797.</p><p>Hartono NTP, Kobler H, Graniero P, et al <b>Stability follows efficiency based on the analysis of a large perovskite solar cells ageing dataset.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 4869.</p><p>Huang ZQ, Li L, Wu TQ, et al <b>Wearable perovskite solar cells by aligned liquid crystal elastomers.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1204.</p><p>Qin W, Ali W, Wang JF, et al <b>Suppressing non-radiative recombination in metal halide perovskite solar cells by synergistic effect of ferroelasticity.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 256.</p><p>Simbula A, Wu LY, Pitzalis F, et al <b>Exciton dissociation in 2D layered metal-halide perovskites.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 4125.</p><p>Zhang H, Pfeifer L, Zakeeruddin SM, et al <b>Tailoring passivators for highly efficient and stable perovskite solar cells.</b> <i>Nature Reviews Chemistry</i> 2023; <b>7</b>(9): 632–652.</p><p>Fei CB, Li NX, Wang MR, et al <b>Lead-chelating hole-transport layers for efficient and stable perovskite minimodules.</b> <i>Science</i> 2023; <b>380</b>(6647): 823–829.</p><p>Li WJ, Li WM, Chen G, et al <b>Tuning band alignment at grain boundaries for efficiency enhancement in Cu</b><sub><b>2</b></sub><b>ZnSnS</b><sub><b>4</b></sub> <b>solar cells.</b> <i>Acs Nano</i> 2023; <b>17</b>(16): 15742–15750.</p><p>Guo JJ, Ao JP, Zhang Y. <b>A critical review on rational composition engineering in kesterite photovoltaic devices: self-regulation and mutual synergy.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(31): 16494–16518.</p><p>Gutzler R, Witte W, Kanevce A, et al <b>V</b><sub><b>OC</b></sub><b>-losses across the band gap: Insights from a high-throughput inline process for CIGS solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(10): 1023–1031.</p><p>Villa S, Aninat R, Yilmaz P, et al <b>Insights into the moisture-induced degradation mechanisms on field-deployed CIGS modules.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(8): 824–839.</p><p>Amrillah T. <b>Enhancing the value of environment-friendly CZTS compound for next generation photovoltaic device: A review.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111982.</p><p>Siripurapu M, Meinardi F, Brovelli S, et al <b>Environmental effects on the performance of quantum dot luminescent solar concentrators.</b> <i>Acs Photonics</i> 2023; <b>10</b>(8): 2987–2993.</p><p>Briones E, Gutierrez A, Tapia-Contreras M, et al <b>Antireflective properties of Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub><b>/SiO</b><sub><b>2</b></sub> <b>multilayer stacks for GaAs solar cells.</b> <i>Applied Optics</i> 2023; <b>62</b>(22): 6007–6015.</p><p>Schlute KL, Johnston SW, Braun AK, et al <b>GaAs solar cells grown on acoustically spalled GaAs substrates with 27% efficiency.</b> <i>Joule</i> 2023; <b>7</b>(7): 1529–1542.</p><p>Lim C, Choi M, Kim T, et al <b>Effect of bandgap variation on photovoltaic properties of lead sulfide quantum dot solar cell.</b> <i>Materials Today Energy</i> 2023; <b>36</b>: 101357.</p><p>Barbon A, Ayuso PF, Bayon L, et al <b>Experimental and numerical investigation of the influence of terrain slope on the of-axis trackers.</b> <i>Applied Energy</i> 2023; <b>348</b>: 121524.</p><p>Gilletly SD, Jackson ND, Staid A. <b>Evaluating the impact of wildfire smoke on solar photovoltaic production.</b> <i>Applied Energy</i> 2023; <b>348</b>: 121303.</p><p>Jiang H, Zhang XT, Yao L, et al <b>High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles.</b> <i>Applied Energy</i> 2023; <b>348</b>: 121553.</p><p>Ledmaoui Y, El Maghraoui A, El Aroussi M, et al <b>Forecasting solar energy production: A comparative study of machine learning algorithms.</b> <i>Energy Reports</i> 2023; <b>10</b>: 1004–1012.</p><p>Zeddini MA, Krim S, Mimouni MF. <b>Experimental validation of an advanced metaheuristic algorithm for maximum power point tracking of a shaded photovoltaic system: A comparative study between three approaches.</b> <i>Energy Reports</i> 2023; <b>10</b>: 161–185.</p><p>Martinez-Comesana M, Martinez-Torres J, Eguiia-Oller P. <b>Optimisation of LSTM neural networks with NSGA-II and FDA for PV installations characterisation.</b> <i>Engineering Applications of Artificial Intelligence</i> 2023; <b>126</b>: 106770.</p><p>Espinoza-Trejo DR, Castro LM, Barcenas E, et al <b>Data-driven switch fault diagnosis for DC/DC boost converters in photovoltaic applications.</b> <i>IEEE Transactions on Industrial Electronics</i> 2024; <b>71</b>(2): 1631–1640.</p><p>Callegaro L, Taghizadeh F, Deilami S, et al <b>A simple technique linearizing and decoupling DC-link voltage control from source nonlinearity in single-stage photovoltaic inverters.</b> <i>IEEE Transactions on Power Electronics</i> 2023; <b>38</b>(9): 11652–11663.</p><p>Chen XY, Xu X, Wang J, et al <b>Robust proactive power smoothing control of PV systems based on deep reinforcement learning.</b> <i>IEEE Transactions on Sustainable Energy</i> 2023; <b>14</b>(3): 1585–1598.</p><p>Mohammed KK, Mekhilef S, Buyamin S. <b>Improved rat swarm optimizer algorithm-based MPPT under partially shaded conditions and load variation for PV systems.</b> <i>IEEE Transactions on Sustainable Energy</i> 2023; <b>14</b>(3): 1385–1396.</p><p>Kim Y, Kim S, Kim S. <b>An integrated agent-based simulation modeling framework for sustainable production of an agrophotovoltaic system.</b> <i>Journal of Cleaner Production</i> 2023; <b>420</b>: 138307.</p><p>Daher DH, Aghaei M, Quansah DA, et al <b>Multi-pronged degradation analysis of a photovoltaic power plant after 9.5 years of operation under hot desert climatic conditions.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(9): 888–907.</p><p>Murugesan P, Winston David P, Murugesan P, et al <b>One-step adaptive reconfiguration technique for partial shaded photovoltaic array.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111949.</p><p>Poulek V, Tyukhov I, Beranek V. <b>On site renovation of degraded PV panels – Cost and environmental effective technology.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111956.</p><p>Brune B, Ortner I, Eder GC, et al <b>Connecting material degradation and power loss of PV modules using advanced statistical methodology.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112485.</p><p>Johnston SW, Jordan DC, Kern DB, et al <b>Degradation-related defect level in weathered silicon heterojunction modules characterized by deep level transient spectroscopy.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112527.</p><p>Yang Y, Li L, Xu D, et al <b>Effect of ultraviolet aging of backsheet on electrical performance of silicon photovoltaic module.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112558.</p><p>Bampoulas A, Pallonetto F, Mangina E, et al <b>A Bayesian deep-learning framework for assessing the energy flexibility of residential buildings with multicomponent energy systems.</b> <i>Applied Energy</i> 2023; <b>348</b>: 121576.</p><p>Cuenca JJ, Daly HE, Hayes BP. <b>Sharing the grid: The key to equitable access for small-scale energy generation.</b> <i>Applied Energy</i> 2023; <b>349</b>: 21641.</p><p>Adefarati T, Bansal RC, Shongwe T, et al <b>Optimal energy management, technical, economic, social, political and environmental benefit analysis of a grid-connected PV/WT/FC hybrid energy system.</b> <i>Energy Conversion and Management</i> 2023; <b>292</b>: 117390.</p><p>Prol JL, Steininger KW, Williges K, et al <b>Potential gains of long-distance trade in electricity.</b> <i>Energy Economics</i> 2023; <b>124</b>: 106739.</p><p>Niu JY, Wu JY, Qin WM, et al <b>Projection of future carbon benefits by photovoltaic power potential in China using CMIP6 statistical downscaling data.</b> <i>Environmental Research Letters</i> 2023; <b>18</b>(9): 094013.</p><p>Dogan E, Luni T, Majeed MT, et al <b>The nexus between global carbon and renewable energy sources: A step towards sustainability.</b> <i>Journal of Cleaner Production</i> 2023; <b>416</b>: 137927.</p><p>Wang YJ, Wang R, Tanaka K, et al <b>Accelerating the energy transition towards photovoltaic and wind in China.</b> <i>Nature</i> 2023; <b>619</b>(7971): 761.</p><p>Besseau R, Tannous S, Douziech M, et al <b>An open-source parameterized life cycle model to assess the environmental performance of silicon-based photovoltaic systems.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(9): 908–920.</p><p>Shao JL, Li J, Yao XL. <b>Net benefits change of waste photovoltaic recycling in China: Projection of waste based on multiple factors.</b> <i>Journal of Cleaner Production</i> 2023; <b>417</b>: 137984.</p><p>Suyanto ER, Sofi M, Lumantarna E, et al <b>Comparison of waste photovoltaic panel processing alternatives in Australia.</b> <i>Journal of Cleaner Production</i> 2023; <b>418</b>: 138128.</p><p>Brenes GH, Riech I, Giácoman-Vallejos G, et al <b>Chemical method for ethyl vinyl acetate removal in crystalline silicon photovoltaic modules.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111778.</p><p>Yu Y, Li S, Xi F, et al <b>Influence of the structural differences between end-of-life Al-BSF and PERC modules on the Al leaching separation behavior.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111938.</p><p>Feng Y, He Y, Zhang G, et al <b>A promising method for the liberation and separation of solar cells from damaged crystalline silicon photovoltaic modules.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112553.</p><p>Sah D, Chitra, Upadhyay NK, et al <b>Growth and analysis of polycrystalline silicon ingots using recycled silicon from waste solar module.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>261</b>: 112524.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"31 12","pages":"1503-1508"},"PeriodicalIF":8.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3748","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3748","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to help readers stay up-to-date in the field, each issue of Progress in Photovoltaics will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including IEEE Journal of Photovoltaics, Solar Energy Materials and Solar Cells, Renewable Energy, Renewable and Sustainable Energy Reviews, Journal of Applied Physics, and Applied Physics Letters. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at [email protected].
Schmid M. Revisiting the definition of solar cell generations.Advanced Optical Materials 2023; 2300697.
Ruud CJ, Gordon JM, Giebink NC. Microcell concentrating photovoltaics for space.Joule 2023; 7(6): 1093–1098.
van Sark W. Photovoltaics performance monitoring is essential in a 100% renewables-based society.Joule 2023; 7(7): 1388–1393.
Kittner N. Breaking down costs.Nature Energy 2023; 8(8): 779–780.
Klemun MM, Kavlak G, McNerney J, et al Mechanisms of hardware and soft technology evolution and the implications for solar energy cost trends.Nature Energy 2023; 8(8): 827.
Holovsky J, Ridzonova K, Amalathas AP, et al Below the Urbach edge: Solar cell loss analysis based on full external quantum efficiency spectra.Acs Energy Letters 2023; 8(7): 3221–3227.
Belabbes F, Cotfas DT, Cotfas PA, et al Using the snake optimization metaheuristic algorithms to extract the photovoltaic cells parameters.Energy Conversion and Management 2023; 292: 117373.
Otamendi U, Martinez I, Olaizola IG, et al A scalable framework for annotating photovoltaic cell defects in electroluminescence images.IEEE Transactions on Industrial Informatics 2023; 19(9): 9361–9369.
Vukovic M, Hillestad M, Jakovljevic M, et al Photoluminescence imaging of field-installed photovoltaic modules in diffuse irradiance.Journal of Applied Physics 2023; 134(7): 074903.
Vukovic M, Liland KH, Indahl UG, et al Extraction of photoluminescence with Pearson correlation coefficient from images of field-installed photovoltaic modules.Journal of Applied Physics 2023; 133(21): 214901.
Zhao YR, Descamps J, Al Bast NA, et al All-optical electrochemiluminescence.Journal of the American Chemical Society 2023; 145(31): 17420–17426.
Abdullah-Vetter Z, Dwivedi P, Buratti Y, et al Advanced analysis of internal quantum efficiency measurements using machine learning.Progress in Photovoltaics: Research and Applications 2023; 31(8): 790–802.
Steiner M, Siefer G. Translation of outdoor tandem PV module I–V measurements to a STC power rating.Progress in Photovoltaics: Research and Applications 2023; 31(8): 862–869.
Weber J, Roessler T. How to assess the electrical quality of solar cell interconnection in shingle solar modules.Progress in Photovoltaics: Research and Applications 2023; 31(9): 949–959.
Xu W, Monokroussos C, Müllejans H, et al Performance evaluation of procedures used to correct measured I-V characteristics of photovoltaic modules for temperature and irradiance.Progress in Photovoltaics: Research and Applications 2023; 31(10): 981–998.
Chen J, Lou YH, Wang ZK. Characterizing spatial and energetic distributions of trap states toward highly efficient perovskite photovoltaics.Small 2023; 2305064.
Krisztián D, Korsós F, Havasi G. Simultaneous measurement of charge carrier concentration, mobility, and lifetime.Solar Energy Materials and Solar Cells 2023; 260: 112461.
Sen C, Wu X, Wang H, et al Accelerated damp-heat testing at the cell-level of bifacial silicon HJT, PERC and TOPCon solar cells using sodium chloride.Solar Energy Materials and Solar Cells 2023; 262: 112554.
Turek M, Meusel M. Automated classification of electroluminescence images using artificial neural networks in correlation to solar cell performance parameters.Solar Energy Materials and Solar Cells 2023; 260: 112483.
Xu ZY, Liu XN, Zhou JK, et al Aluminum and molybdenum Co-doped zinc oxide films as dual-functional carrier-selective contact for silicon solar cells.Acs Applied Materials and Interfaces 2023; 15(29): 34964–34972.
Urdiroz U, Itoiz I, Sevilla J, et al Combining radiative cooling and light trapping strategies for improved performance of PERC bifacial silicon solar cells.Energy Reports 2023; 10: 1116–1125.
Getz MN, Povoli M, Koybasi O, et al Gamma-radiation hardness and long-term stability of ALD-Al2O3surface passivated Si.Journal of Applied Physics 2023; 133(15): 154501.
Masuch P, Reichel C, Bonilla RS, et al Bias-voltage photoconductance and photoluminescence for the determination of silicon-dielectric interface properties in SiO2/Al2O3stacks.Journal of Applied Physics 2023; 134(7): 075705.
Liu XN, Zhou JK, Ding Y, et al Atomic-layer-deposited H:MoOxfunction layer as efficient hole selective passivating contact in silicon solar cells.Materials Today Energy 2023; 36: 101362.
Wang YH, Gu ZY, Li L, et al Interfacial engineering of ZnS passivating contacts for crystalline silicon solar cells achieving 20% efficiency.Materials Today Energy 2023; 35: 101336.
Chu FH, Qu XL, He YC, et al Prediction of sub-pyramid texturing as the next step towards high efficiency silicon heterojunction solar cells.Nature Communications 2023; 14(1): 3596.
Bektaş G, Seyrek S, Keçeci AE, et al A comparative study on alternative industrial manufacturing routes for bifacial n-PERT silicon solar cells.Progress in Photovoltaics: Research and Applications 2023; 31(10): 1016–1022.
Li X, Yang Y, Jiang K, et al Potential-free sodium-induced degradation of silicon heterojunction solar cells.Progress in Photovoltaics: Research and Applications 2023; 31(9): 939–948.
Akgayev B, Sezgin A, Yilmaz M, et al Screen printable fire through nickel contacts for silicon solar cells.Solar Energy Materials and Solar Cells 2023; 261: 112528.
Cheng D, Gao Y. Effect of the diamond saw wires capillary adhesion on the thickness variation of ultra-thin photovoltaic silicon wafers during slicing.Solar Energy Materials and Solar Cells 2023; 261: 112525.
Ding D, Du D, Quan C, et al Application of dual-layer polysilicon deposited by PECVD in n-type TOPCon solar cells.Solar Energy Materials and Solar Cells 2023; 261: 112519.
Du M, Jia R, Li X, et al Theoretical analysis of backside polycrystalline silicon layer in the TOPCon solar cells.Solar Energy Materials and Solar Cells 2023; 262: 112555.
Gageot T, Veirman J, Jay F, et al Feasibility test of drastic indium cut down in SHJ solar cells and modules using ultra-thin ITO layers.Solar Energy Materials and Solar Cells 2023; 261: 112512.
Garland BM, Davis BE, Strandwitz NC. Investigating the effect of aluminum oxide fixed charge on Schottky barrier height in molybdenum oxide-based selective contacts.Solar Energy Materials and Solar Cells 2023; 262: 112537.
Guo C, Jia R, Tian X, et al Study on the influence of micro-alkali texturing and micro-alkali polishing process on the passivation and contact performance of n-TOPCon solar cells.Solar Energy Materials and Solar Cells 2023; 260: 112476.
Hu Z, Cong M, Zhang X, et al Effect of metal impurities concentration on electrical properties in n-type recharged-Czochralski silicon.Solar Energy Materials and Solar Cells 2023; 260: 112482.
Huang X, Zhou Y, Guo W, et al Zr-doped indium oxide films for silicon heterojunction solar cells.Solar Energy Materials and Solar Cells 2023; 260: 112480.
Maischner F, Greulich JM, Kwapil W, et al LeTID mitigation via an adapted firing process in p-type PERC cells from gallium-doped Czochralski silicon.Solar Energy Materials and Solar Cells 2023; 262: 112529.
Maischner F, Kwapil W, Greulich JM, et al Process influences on LeTID in Ga-doped silicon.Solar Energy Materials and Solar Cells 2023; 260: 112451.
Simon J, Fischer-Süßlin R, Zerfaß R, et al Correlation study between LeTID defect density, hydrogen and firing profile in Ga-doped crystalline silicon.Solar Energy Materials and Solar Cells 2023; 260: 112456.
Wang X, Gao K, Xu D, et al Atomic-layer-deposited BOx/Al2O3stack for crystalline silicon surface passivation.Solar Energy Materials and Solar Cells 2023; 260: 112481.
Yu J, Chen Y, He J, et al Enhancing poly-Si contact through a highly conductive and ultra-thin TiN layer for high-efficiency passivating contact silicon solar cells.Solar Energy Materials and Solar Cells 2023; 260: 112491.
Choi YJ, Lim SY, Park JH, et al Atomic layer deposition-free monolithic perovskite/perovskite/silicon triple-junction solar cells.Acs Energy Letters 2023; 8(7): 3141–3146.
Bai YM, Han F, Zeng R, et al Synergy of the transmittance fluctuation factor and absorption selectivity for efficient semitransparent perovskite/organic tandem solar cells with high color-fidelity.Journal of Materials Chemistry A 2023; 11(33): 17514–17524.
Harter A, Mariotti S, Korte L, et al Double-sided nano-textured surfaces for industry compatible high-performance silicon heterojunction and perovskite/silicon tandem solar cells.Progress in Photovoltaics: Research and Applications 2023; 31(8): 813–823.
Peters IM, Rodríguez Gallegos CD, Lüer L, et al Practical limits of multijunction solar cells.Progress in Photovoltaics: Research and Applications 2023; 31(10): 1006–1015.
Singh M, Datta K, Amarnath A, et al Crystalline silicon solar cells with thin poly-SiOxcarrier-selective passivating contacts for perovskite/c-Si tandem applications.Progress in Photovoltaics: Research and Applications 2023; 31(9): 877–887.
Wang G, Yue Z, Huang Z, et al High-performance perovskite/silicon heterojunction solar cells enabled by industrially compatible postannealing.Progress in Photovoltaics: Research and Applications 2023; 31(9): 921–930.
Chin XY, Turkay D, Steele JA, et al Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells.Science 2023; 381(6653): 59–62.
De Wolf S, Aydin E. Tandems have the power perovskite-silicon tandem solar cells b reak the 30% efficiency threshold.Science 2023; 381(6653): 30–31.
Mariotti S, Kohnen E, Scheler F, et al Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells.Science 2023; 381(6653): 63–69.
De Rose A, Erath D, Nikitina V, et al Low-temperature metallization & interconnection for silicon heterojunction and perovskite silicon tandem solar cells.Solar Energy Materials and Solar Cells 2023; 261: 112515.
Li Y, Wang X, Xu Q, et al Nanocrystalline silicon-oxygen based tunneling recombination junctions in perovskite/silicon heterojunction tandem solar cells.Solar Energy Materials and Solar Cells 2023; 262: 112539.
Cao XJ, Guo JX, Li ZX, et al A broad-spectrum solid additive to further boost high-efficiency organic solar cells via morphology regulation.Acs Energy Letters 2023; 8(8): 3494–3503.
Muller JS, Comi M, Eisner F, et al Charge-transfer state dissociation efficiency can limit free charge generation in low-offset organic solar cells.Acs Energy Letters 2023; 8(8): 3387–3397.
Panidi J, Mazzolini E, Eisner F, et al Biorenewable solvents for high-performance organic solar cells.Acs Energy Letters 2023; 8(7): 3038–3047.
Li DH, Wang L, Guo CH, et al Co-crystallization of fibrillar polymer donors for efficient ternary organic solar cells.Acs Materials Letters 2023; 5(8): 2065–2073.
Zhang HR, Ran GL, Cui XY, et al Mitigating exciton recombination losses in organic solar cells by engineering nonfullerene molecular crystallization behavior.Advanced Energy Materials 2023; 2302063.
Song W, Ye QR, Yang SC, et al Ultra robust and highly efficient flexible organic solar cells with over 18% efficiency realized by incorporating a linker dimerized acceptor.Angewandte Chemie-International Edition 2023; 62(41): e202310034.
Jeon SJ, Kim YC, Kim JY, et al Molecular design of cost-effective donor polymers with high visible transmission for eco-friendly and efficient semitransparent organic solar cells.Chemical Engineering Journal 2023; 472: 144850.
Song X, Xu H, Jiang XY, et al Film-formation dynamics coordinated by intermediate state engineering enables efficient thickness-insensitive organic solar cells.Energy and Environmental Science 2023; 16(8): 3441–3452.
Zhang KN, Jiang ZA, Qiao JW, et al Dredging photocarrier trapping pathways via “charge bridge” driven exciton-phonon decoupling enables efficient and photothermal stable quaternary organic solar cells.Energy and Environmental Science 2023; 16(8): 3350–3362.
Mondelli P, Kaienburg P, Silvestri F, et al Understanding the role of non-fullerene acceptor crystallinity in the charge transport properties and performance of organic solar cells.Journal of Materials Chemistry A 2023; 11(30): 16263–16278.
Bai Y, Zhang Z, Zhou QJ, et al Geometry design of tethered small-molecule acceptor enables highly stable and efficient polymer solar cells.Nature Communications 2023; 14(1): 2926.
Liang HZ, Bi XQ, Chen HB, et al A rare case of brominated small molecule acceptors for high-efficiency organic solar cells.Nature Communications 2023; 14(1): 4707.
Paleti SHK, Hultmark S, Han JH, et al Hexanary blends: A strategy towards thermally stable organic photovoltaics.Nature Communications 2023; 14(1): 4608.
Zeng R, Zhu L, Zhang M, et al All-polymer organic solar cells with nano-to-micron hierarchical morphology and large light receiving angle.Nature Communications 2023; 14(1): 4148.
Sung Y-M, Tsao C-S, Cha H-C, et al High transparency and performance slot-die-coated large-area polymer solar module.Progress in Photovoltaics: Research and Applications 2023; 31(8): 803–812.
Feroze S, Distler A, Forberich K, et al Comparative analysis of outdoor energy harvest of organic and silicon solar modules for applications in BIPV systems.Solar Energy 2023; 263: 111894.
Tang YH, Tan WL, Fei ZP, et al Different energetics at donor:acceptor interfaces in bilayer and bulk-heterojunction polymer:non-fullerene organic solar cells.Solar RRL 2023; 2300471.
Loague Q, Keller ND, Muller A, et al Impact of molecular orientation on lateral and interfacial electron transfer at oxide interfaces.Acs Applied Materials and Interfaces 2023; 15(28): 34249–34262.
Castillo-Rodriguez J, Ortiz PD, Mahmood R, et al The development of Au-titania photoanode composites toward semiflexible dye-sensitized solar cells.Solar Energy 2023; 263: 111955.
Ghosh S, Pariari D, Behera T, et al Buried interface passivation of perovskite solar cells by atomic layer deposition of Al2O3. Acs Energy Letters 2023; 8(7): 3112–3,113.
Kitamura T, Wang L, Zhang Z, et al Sn perovskite solar cells with tin oxide nanoparticle layer as hole transport layer.Acs Energy Letters 2023; 8(8): 3565–3568.
Baumeler T, Saleh AA, Wani TA, et al Champion device architectures for low-cost and stable single-junction perovskite solar cells.Acs Materials Letters 2023; 5(9): 2408–2421.
Zhou YH, Yan DD, Zhang H, et al Ionic liquid-mediated intermediate phase adduct constructing for highly stable lead-free perovskite solar cells.Acs Materials Letters 2023; 5(8): 2096–2103.
Yue T, Li K, Li X, et al A binary solution strategy enables high-efficiency quasi-2D perovskite solar cells with excellent thermal stability.Acs Nano 2023; 17(15): 14632–14643.
Wu ZF, Jiang MW, Liu ZH, et al Highly efficient perovskite solar cells enabled by multiple ligand passivation.Advanced Energy Materials 2023; 13(27): 1903696.
Ulatowski AM, Elmestekawy KA, Patel JB, et al Contrasting charge-carrier dynamics across key metal-halide perovskite compositions through in situ simultaneous probes.Advanced Functional Materials 2023; 2305283.
Kim JH, Oh CM, Hwang IW, et al Efficient and stable quasi-2D Ruddlesden-Popper perovskite solar cells by tailoring crystal orientation and passivating surface defects.Advanced Materials 2023; 35(31): 2302143.
Rao H, Su Y, Liu GL, et al Monodisperse adducts-induced homogeneous nucleation towards high-quality tin-based perovskite film.Angewandte Chemie-International Edition 2023; 62(33): e202306712.
Ning L, Zha LY, Duan RZ, et al Fabrication of perovskite solar cells with PCE of 21.84% in open air by bottom-up defect passivation and stress releasement.Chemical Engineering Journal 2023; 471: 144279.
Zhou CC, Wang T, Xu JQ, et al Regulating molecular stacking to construct a superior interfacial contact for highly efficient and stable perovskite solar cells.Chemical Engineering Journal 2023; 472: 144975.
Jiang Q, Song ZN, Bramante RC, et al Highly efficient bifacial single-junction perovskite solar cells.Joule 2023; 7(7): 1543–1555.
Liu K, Rafique S, Musolino SF, et al Covalent bonding strategy to enable non-volatile organic cation perovskite for highly stable and efficient solar cells.Joule 2023; 7(5): 1033–1050.
Kim D, Yun JS, Sagotra A, et al Charge carrier transport properties of twin domains in halide perovskites.Journal of Materials Chemistry A 2023; 11(31): 16743–16754.
Yang Y, Chang Q, Yang YY, et al Multifunctional molecule interface modification for high-performance inverted wide-bandgap perovskite cells and modules.Journal of Materials Chemistry A 2023; 11(31): 16871–16877.
Pariari D, Mehta S, Mandal S, et al Realizing the lowest bandgap and exciton binding energy in a two-dimensional lead halide system.Journal of the American Chemical Society 2023; 145(29): 15896–15905.
Chen J, Lou YH, Wang KL, et al Front electric-field enabling highly efficient perovskite photovoltaics.Nano Energy 2023; 115: 108692.
Chen RH, Yang Y, Dai ZY, et al Patch-healed grain boundary strategy to stabilize perovskite films for high-performance solar modules.Nano Energy 2023; 115: 108759.
Li XG, Xie FM, Rafique S, et al Spectral response regulation strategy by downshifting materials to improve efficiency of flexible perovskite solar cells.Nano Energy 2023; 114: 108619.
Wu ZF, Bi EB, Ono LK, et al Passivation strategies for enhancing device performance of perovskite solar cells.Nano Energy 2023; 115: 108731.
Song ZL, Yang J, Dong XY, et al Inverted wide-bandgap 2D/3D perovskite solar cells with >22% efficiency and low voltage loss.Nano Letters 2023; 23(14): 6705–6712.
Fehr AMK, Agrawal A, Mandani F, et al Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%.Nature Communications 2023; 14(1): 3797.
Hartono NTP, Kobler H, Graniero P, et al Stability follows efficiency based on the analysis of a large perovskite solar cells ageing dataset.Nature Communications 2023; 14(1): 4869.
Huang ZQ, Li L, Wu TQ, et al Wearable perovskite solar cells by aligned liquid crystal elastomers.Nature Communications 2023; 14(1): 1204.
Qin W, Ali W, Wang JF, et al Suppressing non-radiative recombination in metal halide perovskite solar cells by synergistic effect of ferroelasticity.Nature Communications 2023; 14(1): 256.
Simbula A, Wu LY, Pitzalis F, et al Exciton dissociation in 2D layered metal-halide perovskites.Nature Communications 2023; 14(1): 4125.
Zhang H, Pfeifer L, Zakeeruddin SM, et al Tailoring passivators for highly efficient and stable perovskite solar cells.Nature Reviews Chemistry 2023; 7(9): 632–652.
Fei CB, Li NX, Wang MR, et al Lead-chelating hole-transport layers for efficient and stable perovskite minimodules.Science 2023; 380(6647): 823–829.
Li WJ, Li WM, Chen G, et al Tuning band alignment at grain boundaries for efficiency enhancement in Cu2ZnSnS4solar cells.Acs Nano 2023; 17(16): 15742–15750.
Guo JJ, Ao JP, Zhang Y. A critical review on rational composition engineering in kesterite photovoltaic devices: self-regulation and mutual synergy.Journal of Materials Chemistry A 2023; 11(31): 16494–16518.
Gutzler R, Witte W, Kanevce A, et al VOC-losses across the band gap: Insights from a high-throughput inline process for CIGS solar cells.Progress in Photovoltaics: Research and Applications 2023; 31(10): 1023–1031.
Villa S, Aninat R, Yilmaz P, et al Insights into the moisture-induced degradation mechanisms on field-deployed CIGS modules.Progress in Photovoltaics: Research and Applications 2023; 31(8): 824–839.
Amrillah T. Enhancing the value of environment-friendly CZTS compound for next generation photovoltaic device: A review.Solar Energy 2023; 263: 111982.
Siripurapu M, Meinardi F, Brovelli S, et al Environmental effects on the performance of quantum dot luminescent solar concentrators.Acs Photonics 2023; 10(8): 2987–2993.
Briones E, Gutierrez A, Tapia-Contreras M, et al Antireflective properties of Al2O3/SiO2multilayer stacks for GaAs solar cells.Applied Optics 2023; 62(22): 6007–6015.
Schlute KL, Johnston SW, Braun AK, et al GaAs solar cells grown on acoustically spalled GaAs substrates with 27% efficiency.Joule 2023; 7(7): 1529–1542.
Lim C, Choi M, Kim T, et al Effect of bandgap variation on photovoltaic properties of lead sulfide quantum dot solar cell.Materials Today Energy 2023; 36: 101357.
Barbon A, Ayuso PF, Bayon L, et al Experimental and numerical investigation of the influence of terrain slope on the of-axis trackers.Applied Energy 2023; 348: 121524.
Gilletly SD, Jackson ND, Staid A. Evaluating the impact of wildfire smoke on solar photovoltaic production.Applied Energy 2023; 348: 121303.
Jiang H, Zhang XT, Yao L, et al High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles.Applied Energy 2023; 348: 121553.
Ledmaoui Y, El Maghraoui A, El Aroussi M, et al Forecasting solar energy production: A comparative study of machine learning algorithms.Energy Reports 2023; 10: 1004–1012.
Zeddini MA, Krim S, Mimouni MF. Experimental validation of an advanced metaheuristic algorithm for maximum power point tracking of a shaded photovoltaic system: A comparative study between three approaches.Energy Reports 2023; 10: 161–185.
Martinez-Comesana M, Martinez-Torres J, Eguiia-Oller P. Optimisation of LSTM neural networks with NSGA-II and FDA for PV installations characterisation.Engineering Applications of Artificial Intelligence 2023; 126: 106770.
Espinoza-Trejo DR, Castro LM, Barcenas E, et al Data-driven switch fault diagnosis for DC/DC boost converters in photovoltaic applications.IEEE Transactions on Industrial Electronics 2024; 71(2): 1631–1640.
Callegaro L, Taghizadeh F, Deilami S, et al A simple technique linearizing and decoupling DC-link voltage control from source nonlinearity in single-stage photovoltaic inverters.IEEE Transactions on Power Electronics 2023; 38(9): 11652–11663.
Chen XY, Xu X, Wang J, et al Robust proactive power smoothing control of PV systems based on deep reinforcement learning.IEEE Transactions on Sustainable Energy 2023; 14(3): 1585–1598.
Mohammed KK, Mekhilef S, Buyamin S. Improved rat swarm optimizer algorithm-based MPPT under partially shaded conditions and load variation for PV systems.IEEE Transactions on Sustainable Energy 2023; 14(3): 1385–1396.
Kim Y, Kim S, Kim S. An integrated agent-based simulation modeling framework for sustainable production of an agrophotovoltaic system.Journal of Cleaner Production 2023; 420: 138307.
Daher DH, Aghaei M, Quansah DA, et al Multi-pronged degradation analysis of a photovoltaic power plant after 9.5 years of operation under hot desert climatic conditions.Progress in Photovoltaics: Research and Applications 2023; 31(9): 888–907.
Murugesan P, Winston David P, Murugesan P, et al One-step adaptive reconfiguration technique for partial shaded photovoltaic array.Solar Energy 2023; 263: 111949.
Poulek V, Tyukhov I, Beranek V. On site renovation of degraded PV panels – Cost and environmental effective technology.Solar Energy 2023; 263: 111956.
Brune B, Ortner I, Eder GC, et al Connecting material degradation and power loss of PV modules using advanced statistical methodology.Solar Energy Materials and Solar Cells 2023; 260: 112485.
Johnston SW, Jordan DC, Kern DB, et al Degradation-related defect level in weathered silicon heterojunction modules characterized by deep level transient spectroscopy.Solar Energy Materials and Solar Cells 2023; 262: 112527.
Yang Y, Li L, Xu D, et al Effect of ultraviolet aging of backsheet on electrical performance of silicon photovoltaic module.Solar Energy Materials and Solar Cells 2023; 262: 112558.
Bampoulas A, Pallonetto F, Mangina E, et al A Bayesian deep-learning framework for assessing the energy flexibility of residential buildings with multicomponent energy systems.Applied Energy 2023; 348: 121576.
Cuenca JJ, Daly HE, Hayes BP. Sharing the grid: The key to equitable access for small-scale energy generation.Applied Energy 2023; 349: 21641.
Adefarati T, Bansal RC, Shongwe T, et al Optimal energy management, technical, economic, social, political and environmental benefit analysis of a grid-connected PV/WT/FC hybrid energy system.Energy Conversion and Management 2023; 292: 117390.
Prol JL, Steininger KW, Williges K, et al Potential gains of long-distance trade in electricity.Energy Economics 2023; 124: 106739.
Niu JY, Wu JY, Qin WM, et al Projection of future carbon benefits by photovoltaic power potential in China using CMIP6 statistical downscaling data.Environmental Research Letters 2023; 18(9): 094013.
Dogan E, Luni T, Majeed MT, et al The nexus between global carbon and renewable energy sources: A step towards sustainability.Journal of Cleaner Production 2023; 416: 137927.
Wang YJ, Wang R, Tanaka K, et al Accelerating the energy transition towards photovoltaic and wind in China.Nature 2023; 619(7971): 761.
Besseau R, Tannous S, Douziech M, et al An open-source parameterized life cycle model to assess the environmental performance of silicon-based photovoltaic systems.Progress in Photovoltaics: Research and Applications 2023; 31(9): 908–920.
Shao JL, Li J, Yao XL. Net benefits change of waste photovoltaic recycling in China: Projection of waste based on multiple factors.Journal of Cleaner Production 2023; 417: 137984.
Suyanto ER, Sofi M, Lumantarna E, et al Comparison of waste photovoltaic panel processing alternatives in Australia.Journal of Cleaner Production 2023; 418: 138128.
Brenes GH, Riech I, Giácoman-Vallejos G, et al Chemical method for ethyl vinyl acetate removal in crystalline silicon photovoltaic modules.Solar Energy 2023; 263: 111778.
Yu Y, Li S, Xi F, et al Influence of the structural differences between end-of-life Al-BSF and PERC modules on the Al leaching separation behavior.Solar Energy 2023; 263: 111938.
Feng Y, He Y, Zhang G, et al A promising method for the liberation and separation of solar cells from damaged crystalline silicon photovoltaic modules.Solar Energy Materials and Solar Cells 2023; 262: 112553.
Sah D, Chitra, Upadhyay NK, et al Growth and analysis of polycrystalline silicon ingots using recycled silicon from waste solar module.Solar Energy Materials and Solar Cells 2023; 261: 112524.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.