{"title":"Big data analytics deep learning techniques and applications: A survey","authors":"Hend A. Selmy , Hoda K. Mohamed , Walaa Medhat","doi":"10.1016/j.is.2023.102318","DOIUrl":null,"url":null,"abstract":"<div><p>Deep learning (DL), as one of the most active machine learning research fields, has achieved great success in numerous scientific and technological disciplines, including speech recognition, image classification, language processing, big data analytics, and many more. Big data analytics (BDA), where raw data is often unlabeled or uncategorized, can greatly benefit from DL because of its ability to analyze and learn from enormous amounts of unstructured data. This survey paper tackles a comprehensive overview of state-of-the-art DL techniques applied in BDA. The main target of this survey is intended to illustrate the significance of DL and its taxonomy and detail the basic techniques used in BDA. It also explains the DL techniques used in big IoT data applications as well as their various complexities and challenges. The survey presents various real-world data-intensive applications where DL techniques can be applied. In particular, it concentrates on the DL techniques in accordance with the BDA type for each application domain. Additionally, the survey examines DL benchmarked frameworks used in BDA and reviews the available benchmarked datasets, besides analyzing the strengths and limitations of each DL technique and their suitable applications. Further, a comparative analysis is also presented by comparing existing approaches to the DL methods used in BDA. Finally, the challenges of DL modeling and future directions are discussed.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"120 ","pages":"Article 102318"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437923001540","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning (DL), as one of the most active machine learning research fields, has achieved great success in numerous scientific and technological disciplines, including speech recognition, image classification, language processing, big data analytics, and many more. Big data analytics (BDA), where raw data is often unlabeled or uncategorized, can greatly benefit from DL because of its ability to analyze and learn from enormous amounts of unstructured data. This survey paper tackles a comprehensive overview of state-of-the-art DL techniques applied in BDA. The main target of this survey is intended to illustrate the significance of DL and its taxonomy and detail the basic techniques used in BDA. It also explains the DL techniques used in big IoT data applications as well as their various complexities and challenges. The survey presents various real-world data-intensive applications where DL techniques can be applied. In particular, it concentrates on the DL techniques in accordance with the BDA type for each application domain. Additionally, the survey examines DL benchmarked frameworks used in BDA and reviews the available benchmarked datasets, besides analyzing the strengths and limitations of each DL technique and their suitable applications. Further, a comparative analysis is also presented by comparing existing approaches to the DL methods used in BDA. Finally, the challenges of DL modeling and future directions are discussed.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.