{"title":"Metaopera: A Cross-Metaverse Interoperability Protocol","authors":"Taotao Li, Changlin Yang, Qinglin Yang, Shizhan Lan, Siqi Zhou, Xiaofei Luo, Huawei Huang, Zibin Zheng","doi":"10.1109/mwc.011.2300042","DOIUrl":null,"url":null,"abstract":"Various metaverse applications have entered our daily life and show a promising trend that will occupy people's attention in the era of Web3. This makes interoperability across metaverses become one of the fundamental technologies in the context of multiple metaverse platforms. The aim of interoperability is to provide a seamless service for users when their requests interact with multiple metaverses. However, the development of cross-metaverse interoperability is still in its initial stage in both industry and academia. In this article, we review the state- of-the-art cross-metaverse interoperability solutions, which are designed for a dedicated purpose but do not apply to all metaverse platforms. To this end, we propose MetaOpera, a generalized cross-metaverse interoperability protocol. Connecting to MetaOpera by means of wireless communication, users and digital objects across different metaverses that rely on centralized servers or decentralized blockchains are capable of interacting with each other. We also implement a proof-of-concept mechanism for Meta- Opera, aiming at evaluating its performance with a state-of-the-art cross-metaverse solution based on the Sidechains technique. Simulation results demonstrate that the size of cross-metaverse proof and the average latency of cross-metaverse transactions using the proposed solution are about eight to three times smaller, respectively, than those of the Sidechains solution. This article also suggests a number of open issues and challenges faced by cross-metaverse interoperability that may inspire future research.","PeriodicalId":13342,"journal":{"name":"IEEE Wireless Communications","volume":"32 5","pages":""},"PeriodicalIF":10.9000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/mwc.011.2300042","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Various metaverse applications have entered our daily life and show a promising trend that will occupy people's attention in the era of Web3. This makes interoperability across metaverses become one of the fundamental technologies in the context of multiple metaverse platforms. The aim of interoperability is to provide a seamless service for users when their requests interact with multiple metaverses. However, the development of cross-metaverse interoperability is still in its initial stage in both industry and academia. In this article, we review the state- of-the-art cross-metaverse interoperability solutions, which are designed for a dedicated purpose but do not apply to all metaverse platforms. To this end, we propose MetaOpera, a generalized cross-metaverse interoperability protocol. Connecting to MetaOpera by means of wireless communication, users and digital objects across different metaverses that rely on centralized servers or decentralized blockchains are capable of interacting with each other. We also implement a proof-of-concept mechanism for Meta- Opera, aiming at evaluating its performance with a state-of-the-art cross-metaverse solution based on the Sidechains technique. Simulation results demonstrate that the size of cross-metaverse proof and the average latency of cross-metaverse transactions using the proposed solution are about eight to three times smaller, respectively, than those of the Sidechains solution. This article also suggests a number of open issues and challenges faced by cross-metaverse interoperability that may inspire future research.
期刊介绍:
IEEE Wireless Communications is tailored for professionals within the communications and networking communities. It addresses technical and policy issues associated with personalized, location-independent communications across various media and protocol layers. Encompassing both wired and wireless communications, the magazine explores the intersection of computing, the mobility of individuals, communicating devices, and personalized services.
Every issue of this interdisciplinary publication presents high-quality articles delving into the revolutionary technological advances in personal, location-independent communications, and computing. IEEE Wireless Communications provides an insightful platform for individuals engaged in these dynamic fields, offering in-depth coverage of significant developments in the realm of communication technology.