Rahul Yadav, Nilanjan Das Chakladar, Soumitra Paul
{"title":"Tailoring of residual stress by ultrasonic vibration-assisted abrasive peening in liquid cavitation of metallic alloys","authors":"Rahul Yadav, Nilanjan Das Chakladar, Soumitra Paul","doi":"10.1016/j.ijmachtools.2023.104100","DOIUrl":null,"url":null,"abstract":"<div><p>The present study proposes a novel method of ultrasonic vibration assisted-abrasive peening for the enhancement of residual stress on the surface of metals and their alloys. The system employs a vibrating sonotrode that drives the formation and collapse of bubbles within a fluid medium. The imploding bubbles produce pressure waves which transfer momentum to the abrasives which are uniformly distributed in the fluid medium. The abrasives bombard a targeted surface along with intense pressure waves. This induces compressive residual stress through local plastic deformation in a short period. The capability of the ultrasonic-assisted abrasive peening setup is analysed in terms of residual stress by altering the abrasive concentration, peening time, and stand-of-distance between the bottom of the sonotrode and the exposed surface to be treated. The process is able to induce significant residual stress at around 67 % of yield strength for hard material Ti–6Al–4V and more than 80 % of yield strength for ductile materials, Al-6061 and OFHC-Cu. A numerical method coupled with a finite element model is employed to predict the dynamics of the process from cavitation of the bubble to the plastic deformation of the work material. At first, the model estimates the magnitudes of high-pressure waves at the bubble implosion near the solid surface, micro-jet velocity, and abrasive velocity. This information is then fed to Abaqus for numerical modelling of the deformation of work material. The impact of high-speed abrasives in the range of 100 m/s, pressure waves and microjets at the material surface are simulated through the FE model. The simulated results are verified with experimental findings in terms of surface residual stress for different materials, deviating within 10 %.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"194 ","pages":"Article 104100"},"PeriodicalIF":14.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890695523001086/pdfft?md5=5c2739c8f07add29b1e99273ec9b207a&pid=1-s2.0-S0890695523001086-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695523001086","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The present study proposes a novel method of ultrasonic vibration assisted-abrasive peening for the enhancement of residual stress on the surface of metals and their alloys. The system employs a vibrating sonotrode that drives the formation and collapse of bubbles within a fluid medium. The imploding bubbles produce pressure waves which transfer momentum to the abrasives which are uniformly distributed in the fluid medium. The abrasives bombard a targeted surface along with intense pressure waves. This induces compressive residual stress through local plastic deformation in a short period. The capability of the ultrasonic-assisted abrasive peening setup is analysed in terms of residual stress by altering the abrasive concentration, peening time, and stand-of-distance between the bottom of the sonotrode and the exposed surface to be treated. The process is able to induce significant residual stress at around 67 % of yield strength for hard material Ti–6Al–4V and more than 80 % of yield strength for ductile materials, Al-6061 and OFHC-Cu. A numerical method coupled with a finite element model is employed to predict the dynamics of the process from cavitation of the bubble to the plastic deformation of the work material. At first, the model estimates the magnitudes of high-pressure waves at the bubble implosion near the solid surface, micro-jet velocity, and abrasive velocity. This information is then fed to Abaqus for numerical modelling of the deformation of work material. The impact of high-speed abrasives in the range of 100 m/s, pressure waves and microjets at the material surface are simulated through the FE model. The simulated results are verified with experimental findings in terms of surface residual stress for different materials, deviating within 10 %.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).