Optical gain of CdxZn1−xTe quantum dot structures

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Micro & Nano Letters Pub Date : 2023-11-27 DOI:10.1049/mna2.12180
Muwaffaq Abdullah, Baqer O. Al-Nashy, Amin H. Al-Khursan
{"title":"Optical gain of CdxZn1−xTe quantum dot structures","authors":"Muwaffaq Abdullah, Baqer O. Al-Nashy, Amin H. Al-Khursan","doi":"10.1049/mna2.12180","DOIUrl":null,"url":null,"abstract":"Gain spectra of undoped and doped quantum dot (QD) structures are studied under the inhomogeneous broadening assumption at four mole fractions . For the QD structure, two peaks appear due to the excited state (ES) and ground state (GS) transitions. The gain for the doped structures doubles the undoped ones. The gain increases while the wavelength is reduced with increasing Cd content due to the broader band discontinuity between the QD states. The discontinuity of the bands for each structure (mole fraction) is calculated, which is one of the merits of this work. While the structure offers the peak wavelengths 470 and 630 nm, other mole fractions offer the wavelengths between them. These visible bands are essential in different applications. The effect of QD size effect is also examined. The wavelength is extended by 20 nm for each 1 nm QD height increment.","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"18 9-12","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12180","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mna2.12180","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gain spectra of undoped and doped quantum dot (QD) structures are studied under the inhomogeneous broadening assumption at four mole fractions . For the QD structure, two peaks appear due to the excited state (ES) and ground state (GS) transitions. The gain for the doped structures doubles the undoped ones. The gain increases while the wavelength is reduced with increasing Cd content due to the broader band discontinuity between the QD states. The discontinuity of the bands for each structure (mole fraction) is calculated, which is one of the merits of this work. While the structure offers the peak wavelengths 470 and 630 nm, other mole fractions offer the wavelengths between them. These visible bands are essential in different applications. The effect of QD size effect is also examined. The wavelength is extended by 20 nm for each 1 nm QD height increment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CdxZn1−xTe量子点结构的光学增益
C d x Z n 1−x T e / A 1的增益谱在非均匀展宽假设下,研究了四种Cd$ Cd$摩尔分数($({X \;;= \;0.25,\;0.5,\;0.75,\;0.95})$。对于C d 0.25 Z n 0.75 Te$ C{d_{0.25}}Z{n_{0.75}}Te$ QD结构,由于激发态(ES)和基态(GS)跃迁,出现了两个峰。掺杂结构的增益是未掺杂结构的两倍。随着Cd含量的增加,增益增加,而波长减少,这是由于量子点态之间的频带不连续变宽。计算了每个结构(摩尔分数)的能带不连续度,这是本工作的优点之一。而结构C d 0.25 zn 0.75 Te$ C{d_{0.25}}Z{n_{0.75}}Te$的峰值波长为470和630 nm;其他摩尔分数给出了它们之间的波长。这些可见波段在不同的应用中是必不可少的。还考察了量子点尺寸效应的影响。QD高度每增加1 nm,波长延长20 nm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Micro & Nano Letters
Micro & Nano Letters 工程技术-材料科学:综合
CiteScore
3.30
自引率
0.00%
发文量
58
审稿时长
2.8 months
期刊介绍: Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities. Scope Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities. Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications. Typical topics include: Micro and nanostructures for the device communities MEMS and NEMS Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data Synthesis and processing Micro and nano-photonics Molecular machines, circuits and self-assembly Organic and inorganic micro and nanostructures Micro and nano-fluidics
期刊最新文献
Catalytic oxidation of CO over CuO@TiO2 catalyst: The relationship between activity and adsorption performance Anticancer effect of surface functionalized nano titanium dioxide with 5-fluorouracil on oral cancer cell line—An in vitro study Green synthesis of cerium oxide nanoparticles via Linum usitatissimum seeds extract and assessment of its biological effects Graphene nanoribbon FET technology-based OTA for optimizing fast and energy-efficient electronics for IoT application: Next-generation circuit design Construction of ZnCo2O4/Ag3PO4 composite photocatalyst for enhanced photocatalytic performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1