Sukjin Bae, In Kyoung Kim, Jeonghyeon Im, Heayon Lee, Sang Haak Lee, Sei Won Kim
{"title":"Impact of lipopolysaccharide-induced acute lung injury in aged mice.","authors":"Sukjin Bae, In Kyoung Kim, Jeonghyeon Im, Heayon Lee, Sang Haak Lee, Sei Won Kim","doi":"10.1080/01902148.2023.2285061","DOIUrl":null,"url":null,"abstract":"<p><p><b>Study Aim:</b> As the geriatric population rapidly expands, there has been a concurrent increase in elderly admissions to intensive care units (ICUs). Acute lung injury (ALI) is a prevalent reason for these admissions and carries poorer survival rates for the aged population compared to younger counterparts. The aging lung is subject to physiological, cellular, and immunological changes. However, our understanding of how aging impacts the clinical progression of ALI is limited. This study explored the effect of aging using a murine model of ALI. <b>Methods:</b> Female C57BL/6J mice, aged 7-8 wk (young) and 18 months (aged), were divided into four groups: young controls, aged controls, young with ALI (YL), and aged with ALI (AL). ALI was induced <i>via</i> intratracheal administration of lipopolysaccharide (LPS, 0.5 mg/kg). The animals were euthanized 72 h after LPS exposure. <b>Results:</b> The AL group exhibited a significantly increased wet/dry ratio compared to the other three groups, including the YL group. The bronchoalveolar lavage (BAL) fluid in the AL group had more cells overall, including more neutrophils, than the other groups. Inflammatory cytokines in BAL fluid showed similar trends. Histological analyses demonstrated more severe lung injury and fibrosis in the AL group than in the other groups. Increased transcription of senescence-associated secretory phenotype markers, including PAI-1 and MUC5B, was more prominent in the AL group than in the other groups. This trend was also observed in BAL samples from humans with pneumonia. <b>Conclusions:</b> Aging may amplify lung damage and inflammatory responses in ALI. This suggests that physicians should exercise increased caution in the clinical management of aged patients with ALI.</p>","PeriodicalId":12206,"journal":{"name":"Experimental Lung Research","volume":"49 1","pages":"193-204"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Lung Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01902148.2023.2285061","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Study Aim: As the geriatric population rapidly expands, there has been a concurrent increase in elderly admissions to intensive care units (ICUs). Acute lung injury (ALI) is a prevalent reason for these admissions and carries poorer survival rates for the aged population compared to younger counterparts. The aging lung is subject to physiological, cellular, and immunological changes. However, our understanding of how aging impacts the clinical progression of ALI is limited. This study explored the effect of aging using a murine model of ALI. Methods: Female C57BL/6J mice, aged 7-8 wk (young) and 18 months (aged), were divided into four groups: young controls, aged controls, young with ALI (YL), and aged with ALI (AL). ALI was induced via intratracheal administration of lipopolysaccharide (LPS, 0.5 mg/kg). The animals were euthanized 72 h after LPS exposure. Results: The AL group exhibited a significantly increased wet/dry ratio compared to the other three groups, including the YL group. The bronchoalveolar lavage (BAL) fluid in the AL group had more cells overall, including more neutrophils, than the other groups. Inflammatory cytokines in BAL fluid showed similar trends. Histological analyses demonstrated more severe lung injury and fibrosis in the AL group than in the other groups. Increased transcription of senescence-associated secretory phenotype markers, including PAI-1 and MUC5B, was more prominent in the AL group than in the other groups. This trend was also observed in BAL samples from humans with pneumonia. Conclusions: Aging may amplify lung damage and inflammatory responses in ALI. This suggests that physicians should exercise increased caution in the clinical management of aged patients with ALI.
期刊介绍:
Experimental Lung Research publishes original articles in all fields of respiratory tract anatomy, biology, developmental biology, toxicology, and pathology. Emphasis is placed on investigations concerned with molecular, biochemical, and cellular mechanisms of normal function, pathogenesis, and responses to injury. The journal publishes reports on important methodological advances on new experimental modes. Also published are invited reviews on important and timely research advances, as well as proceedings of specialized symposia.
Authors can choose to publish gold open access in this journal.