Unusual Evolution of Cephalopod Tryptophan Indole-Lyases.

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Evolution Pub Date : 2023-12-01 Epub Date: 2023-11-26 DOI:10.1007/s00239-023-10144-x
Hajime Julie Yuasa
{"title":"Unusual Evolution of Cephalopod Tryptophan Indole-Lyases.","authors":"Hajime Julie Yuasa","doi":"10.1007/s00239-023-10144-x","DOIUrl":null,"url":null,"abstract":"<p><p>Tryptophan indole-lyase (TIL), a pyridoxal-5-phosphate-dependent enzyme, catalyzes the hydrolysis of L-tryptophan (L-Trp) to indole and ammonium pyruvate. TIL is widely distributed among bacteria and bacterial TILs consist of a D2-symmetric homotetramer. On the other hand, TIL genes are also present in several metazoans. Cephalopods have two TILs, TILα and TILβ, which are believed to be derived from a gene duplication that occurred before octopus and squid diverged. However, both TILα and TILβ individually contain disruptive amino acid substitutions for TIL activity, and neither was active when expressed alone. When TILα and TILβ were coexpressed, however, they formed a heterotetramer that exhibited low TIL activity. The loss of TIL activity of the heterotetramer following site-directed mutagenesis strongly suggests that the active heterotetramer contains the TILα/TILβ heterodimer. Metazoan TILs generally have lower k<sub>cat</sub> values for L-Trp than those of bacterial TILs, but such low TIL activity may be rather suitable for metazoan physiology, where L-Trp is in high demand. Therefore, reduced activity may have been a less likely target for purifying selection in the evolution of cephalopod TILs. Meanwhile, the unusual evolution of cephalopod TILs may indicate the difficulty of post-gene duplication evolution of enzymes with catalytic sites contributed by multiple subunits, such as TIL.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-023-10144-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tryptophan indole-lyase (TIL), a pyridoxal-5-phosphate-dependent enzyme, catalyzes the hydrolysis of L-tryptophan (L-Trp) to indole and ammonium pyruvate. TIL is widely distributed among bacteria and bacterial TILs consist of a D2-symmetric homotetramer. On the other hand, TIL genes are also present in several metazoans. Cephalopods have two TILs, TILα and TILβ, which are believed to be derived from a gene duplication that occurred before octopus and squid diverged. However, both TILα and TILβ individually contain disruptive amino acid substitutions for TIL activity, and neither was active when expressed alone. When TILα and TILβ were coexpressed, however, they formed a heterotetramer that exhibited low TIL activity. The loss of TIL activity of the heterotetramer following site-directed mutagenesis strongly suggests that the active heterotetramer contains the TILα/TILβ heterodimer. Metazoan TILs generally have lower kcat values for L-Trp than those of bacterial TILs, but such low TIL activity may be rather suitable for metazoan physiology, where L-Trp is in high demand. Therefore, reduced activity may have been a less likely target for purifying selection in the evolution of cephalopod TILs. Meanwhile, the unusual evolution of cephalopod TILs may indicate the difficulty of post-gene duplication evolution of enzymes with catalytic sites contributed by multiple subunits, such as TIL.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
头足类色氨酸吲哚裂解酶的不寻常进化。
色氨酸吲哚裂解酶(TIL)是一种吡哆醛-5-磷酸依赖酶,催化l-色氨酸(L-Trp)水解成吲哚和丙酮酸铵。TIL广泛分布于细菌中,细菌TIL由二维对称的同四聚体组成。另一方面,TIL基因也存在于一些后生动物中。头足类动物有两个til, TILα和TILβ,这被认为是源于章鱼和鱿鱼分化之前发生的基因复制。然而,TILα和TILβ都含有破坏TIL活性的氨基酸取代,并且单独表达时两者都不具有活性。然而,当TILα和TILβ共表达时,它们形成了具有低TIL活性的异四聚体。在位点定向诱变后,异四聚体的TIL活性的丧失强烈表明,活性的异四聚体含有TILα/TILβ异二聚体。后生动物的TIL对L-Trp的kcat值通常低于细菌的TIL,但这种低TIL活性可能更适合后生动物生理,因为后生动物对L-Trp的需求很大。因此,在头足类TILs的进化过程中,活性降低可能是一个不太可能的纯化选择目标。同时,头足类TILs的异常进化可能表明由多个亚基(如TIL)提供催化位点的酶的基因后复制进化困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
期刊最新文献
Stress-Induced Constraint on Expression Noise of Essential Genes in E. coli. Correction: Analysis of Cancer-Resisting Evolutionary Adaptations in Wild Animals and Applications for Human Oncology. Putative MutS2 Homologs in Algae: More Goods in Shopping Bag? Volatile Organic Compound Metabolism on Early Earth. Evolution of Cellular Organization Along the First Branches of the Tree of Life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1