{"title":"Unusual Evolution of Cephalopod Tryptophan Indole-Lyases.","authors":"Hajime Julie Yuasa","doi":"10.1007/s00239-023-10144-x","DOIUrl":null,"url":null,"abstract":"<p><p>Tryptophan indole-lyase (TIL), a pyridoxal-5-phosphate-dependent enzyme, catalyzes the hydrolysis of L-tryptophan (L-Trp) to indole and ammonium pyruvate. TIL is widely distributed among bacteria and bacterial TILs consist of a D2-symmetric homotetramer. On the other hand, TIL genes are also present in several metazoans. Cephalopods have two TILs, TILα and TILβ, which are believed to be derived from a gene duplication that occurred before octopus and squid diverged. However, both TILα and TILβ individually contain disruptive amino acid substitutions for TIL activity, and neither was active when expressed alone. When TILα and TILβ were coexpressed, however, they formed a heterotetramer that exhibited low TIL activity. The loss of TIL activity of the heterotetramer following site-directed mutagenesis strongly suggests that the active heterotetramer contains the TILα/TILβ heterodimer. Metazoan TILs generally have lower k<sub>cat</sub> values for L-Trp than those of bacterial TILs, but such low TIL activity may be rather suitable for metazoan physiology, where L-Trp is in high demand. Therefore, reduced activity may have been a less likely target for purifying selection in the evolution of cephalopod TILs. Meanwhile, the unusual evolution of cephalopod TILs may indicate the difficulty of post-gene duplication evolution of enzymes with catalytic sites contributed by multiple subunits, such as TIL.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-023-10144-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tryptophan indole-lyase (TIL), a pyridoxal-5-phosphate-dependent enzyme, catalyzes the hydrolysis of L-tryptophan (L-Trp) to indole and ammonium pyruvate. TIL is widely distributed among bacteria and bacterial TILs consist of a D2-symmetric homotetramer. On the other hand, TIL genes are also present in several metazoans. Cephalopods have two TILs, TILα and TILβ, which are believed to be derived from a gene duplication that occurred before octopus and squid diverged. However, both TILα and TILβ individually contain disruptive amino acid substitutions for TIL activity, and neither was active when expressed alone. When TILα and TILβ were coexpressed, however, they formed a heterotetramer that exhibited low TIL activity. The loss of TIL activity of the heterotetramer following site-directed mutagenesis strongly suggests that the active heterotetramer contains the TILα/TILβ heterodimer. Metazoan TILs generally have lower kcat values for L-Trp than those of bacterial TILs, but such low TIL activity may be rather suitable for metazoan physiology, where L-Trp is in high demand. Therefore, reduced activity may have been a less likely target for purifying selection in the evolution of cephalopod TILs. Meanwhile, the unusual evolution of cephalopod TILs may indicate the difficulty of post-gene duplication evolution of enzymes with catalytic sites contributed by multiple subunits, such as TIL.
期刊介绍:
Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.