Mapping of conserved immunodominant epitope peptides in the outer membrane porin (Omp) L of prominent Enterobacteriaceae pathogens associated with gastrointestinal infections.
{"title":"Mapping of conserved immunodominant epitope peptides in the outer membrane porin (Omp) L of prominent Enterobacteriaceae pathogens associated with gastrointestinal infections.","authors":"Harish Babu Kolla, Shivakiran Satyanarayan Makam, Prakash Narayana Reddy","doi":"10.1186/s43141-023-00622-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Members of Enterobacteriaceae such as Escherichia coli O 157:H7, Salmonella sp., Shigella sp., Klebsiella sp., and Citrobacter freundii are responsible for the outbreak of serious foodborne illness and other mucosal infections across the globe. The outer membrane proteins (OMPs) of Enterobacteriaceae are highly immunogenic in eliciting immune responses against pathogens. Moreover, the OMPs are highly conserved in the Enterobacteriaceae family. Sequence homology in the OMPs will ensure the presence of conserved immunodominant regions with predominant epitopes. The OmpL is such an immunogen that is highly conserved among the Enterobacteriaceae pathogens. In this study, we performed computational analysis on the outer membrane porin (Omp) L of prominent Enterobacteriaceae pathogens.</p><p><strong>Results: </strong>Multiple sequence and structural alignment analysis have revealed that the OmpL protein is highly conserved among the selected Enterobacteriaceae pathogens. This amount of sequence and structural homology uncovered the conserved antibody binding B-cell epitopes in the OmpL protein. The B-cell epitopes predicted in the OmpL of Salmonella typhimurium are highly conserved among the other Enterobacteriaceae pathogens.</p><p><strong>Conclusion: </strong>In conclusion, these conserved B-cell epitopes will vouch for the generation of heterologous humoral immune response in conferring cross protection against the Enterobacteriaceae pathogens and control their outbreaks across the globe.</p>","PeriodicalId":74026,"journal":{"name":"Journal, genetic engineering & biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682294/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal, genetic engineering & biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43141-023-00622-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Members of Enterobacteriaceae such as Escherichia coli O 157:H7, Salmonella sp., Shigella sp., Klebsiella sp., and Citrobacter freundii are responsible for the outbreak of serious foodborne illness and other mucosal infections across the globe. The outer membrane proteins (OMPs) of Enterobacteriaceae are highly immunogenic in eliciting immune responses against pathogens. Moreover, the OMPs are highly conserved in the Enterobacteriaceae family. Sequence homology in the OMPs will ensure the presence of conserved immunodominant regions with predominant epitopes. The OmpL is such an immunogen that is highly conserved among the Enterobacteriaceae pathogens. In this study, we performed computational analysis on the outer membrane porin (Omp) L of prominent Enterobacteriaceae pathogens.
Results: Multiple sequence and structural alignment analysis have revealed that the OmpL protein is highly conserved among the selected Enterobacteriaceae pathogens. This amount of sequence and structural homology uncovered the conserved antibody binding B-cell epitopes in the OmpL protein. The B-cell epitopes predicted in the OmpL of Salmonella typhimurium are highly conserved among the other Enterobacteriaceae pathogens.
Conclusion: In conclusion, these conserved B-cell epitopes will vouch for the generation of heterologous humoral immune response in conferring cross protection against the Enterobacteriaceae pathogens and control their outbreaks across the globe.