{"title":"Mediation analysis method review of high throughput data.","authors":"Qiang Han, Yu Wang, Na Sun, Jiadong Chu, Wei Hu, Yueping Shen","doi":"10.1515/sagmb-2023-0031","DOIUrl":null,"url":null,"abstract":"<p><p>High-throughput technologies have made high-dimensional settings increasingly common, providing opportunities for the development of high-dimensional mediation methods. We aimed to provide useful guidance for researchers using high-dimensional mediation analysis and ideas for biostatisticians to develop it by summarizing and discussing recent advances in high-dimensional mediation analysis. The method still faces many challenges when extended single and multiple mediation analyses to high-dimensional settings. The development of high-dimensional mediation methods attempts to address these issues, such as screening true mediators, estimating mediation effects by variable selection, reducing the mediation dimension to resolve correlations between variables, and utilizing composite null hypothesis testing to test them. Although these problems regarding high-dimensional mediation have been solved to some extent, some challenges remain. First, the correlation between mediators are rarely considered when the variables are selected for mediation. Second, downscaling without incorporating prior biological knowledge makes the results difficult to interpret. In addition, a method of sensitivity analysis for the strict sequential ignorability assumption in high-dimensional mediation analysis is still lacking. An analyst needs to consider the applicability of each method when utilizing them, while a biostatistician could consider extensions and improvements in the methodology.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2023-0031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
High-throughput technologies have made high-dimensional settings increasingly common, providing opportunities for the development of high-dimensional mediation methods. We aimed to provide useful guidance for researchers using high-dimensional mediation analysis and ideas for biostatisticians to develop it by summarizing and discussing recent advances in high-dimensional mediation analysis. The method still faces many challenges when extended single and multiple mediation analyses to high-dimensional settings. The development of high-dimensional mediation methods attempts to address these issues, such as screening true mediators, estimating mediation effects by variable selection, reducing the mediation dimension to resolve correlations between variables, and utilizing composite null hypothesis testing to test them. Although these problems regarding high-dimensional mediation have been solved to some extent, some challenges remain. First, the correlation between mediators are rarely considered when the variables are selected for mediation. Second, downscaling without incorporating prior biological knowledge makes the results difficult to interpret. In addition, a method of sensitivity analysis for the strict sequential ignorability assumption in high-dimensional mediation analysis is still lacking. An analyst needs to consider the applicability of each method when utilizing them, while a biostatistician could consider extensions and improvements in the methodology.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.